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Introduction

Rocket science doesn’t require white lab coats or a job in Cape
Canaveral. You don’t need a million-dollar budget or a Ph.D.
either. An empty soda bottle and an air pump will do just fine,
because rocket science is the theory behind launching these rock-
ets into the air, no matter whether you are launching a state-of-
the-art rocket or an empty soda bottle.

Although pressurized air and water is not quite the same
as liquid hydrogen, we still calculate it using the same laws of
physics. And it’s not as complex as you may think. Typical high
school math and physics classes cover 95% of the information
needed to understand rocket theory, but few of them take the
extra step to apply the basic principles to more complex appli-
cations such as rockets.

Science Olympiad offers students the opportunity to explore
rocketry and to extend their classroom knowledge to practical
applications. This handbook is intended to be a guide to the
Science Olympiad event, but it can also provide a useful resource
for all types of hobby rockets.

While reading this book, every student (and teacher) has one
question in mind: How do I get the longest time aloft? There
is no single formula or design to guarantee one- and two-minute
launches; the key to making a rocket stay aloft for a minute is to
understand why the rocket stays aloft for a minute.

Although this handbook contains the “secrets” of building
a one-minute rocket, you will not find plans or instructions for
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2 INTRODUCTION

building a winning rocket. However, you will find what I call
“building techniques”—these are methods that I and other stu-
dents at Columbus High have developed. Plans would restrict
creativity and ingenuity, and defeat the purpose of the Bottle
Rocket event. Techniques, on the other hand, have the opposite
effect. By understanding how to construct a fin capable of with-
standing strong forces and how to build a parachute by melting
plastic bags will allow you to create any fin or parachute that
you can imagine.



Format

This is a handbook—a guide containing lots of various topics
related to water rockets. It is not a typical book which you
would read cover—to—cover. In fact, the chapters in this book
could probably be arranged in any random order, and it would
make little difference.

The chapters are definately not arranged in order of difficulty.
Do not be discouraged if a chapter seems too long or overly tech-
nical. Skip over it and go on to another chapter.

To make the book more organized, the chapters are grouped
into three main categories: theory, construction, and mathemat-
ics.

The first part, Rocket Theory, is the most general and explores
the fundamentals of rocketry. Fundamentals often carries a con-
notation of “basics,” but this is not the case in this handbook.
By “fundamentals,” T am referring to the physics principles which
govern rockets and how to apply these principles to building a
good rocket. The fundamentals in this book cover topics such as
stabiltity and forces, which are overlooked by most other books.
These fundamentals are the key to developing a winning design,
because they eliminate the guesswork that would otherwise be re-
quired. Once you understand the fundamentals, you will be able
to look at your rocket, and spot areas for improvement, without
using trial-and—error techniques.

Part two, Rocket Construction, consists of chapters that each
focus on one particular component of the rocket. The build-
ing techniques contained in this handbook are ones that we at

3



4 FORMAT

Columbus High School have tested and used, but they are not
the only (and likely not the best) methods for building rockets.
Always feel free to try new methods and materials.

The third part, Mathematical Calculations, is really a sup-
plement to the first two parts. Earlier chapters will refer to
parachute designs and simulator results obtained from the for-
mulas and algortihms in Part III. Although it is not necessary
to understand these formulas to use the data, they provide the
information needed to develop computer models and simulations.



Part 1

Rocket Theory






Chapter 1

Ten Common Myths

Myths about rocket design are everywhere. This chapter should
help to clear up 10 of the most common misconceptions about
the design of water rockets.

Myth #10 — If it looks good, it will fly.

Few students understand the physics principles which determine
a rocket’s flight. Understanding these principles—forces (thrust,
gravity, etc...), drag, and stability—are critical to building a
successful rocket. Often, the “this looks about right” method
does not work, because large, supersonic rockets are designed
differently, because of their high speeds and computer guidance
systems. An introduction to rocket design begins in chapter 3.

Myth #9 — Using a heavy nosecone is the most reliable
way to deploy a parachute.

There are many better ways to deploy a parachute using an
“active” system—one involving spring-loading or rubber bands.
Using an airspeed-sensitive flap, these can be set to deploy at
apogee, utilizing the maximum height of the rocket, and ap-
proaching an 80-95% reliability rate (depending on how well the
system is constructed and tested). See chapter 10 for more on
active deployment systems.
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Myth #8 — Duct tape is the best material for attaching
rocket parts, because it is strong.

Duct tape is stronger than necessary for most rocket parts. It
adds unnecessary weight to the rocket, which greatly decreases
the rocket’s performance. (A typical piece of duct tape weighs 3
to 10 grams, decreasing a rocket’s time aloft by 1 to 3 seconds
for every piece of tape used. See chapter 3 for more on the effect
of excess weight on rockets.) Packaging tape or mailing tape is a
much lighter alternative, and offers sufficient strength.

Myth #7 — All materials on water-powered rocket must
be waterproof.

Waterproof materials are not necessary on any part of the rocket,
even fins. It is more important to use light materials, instead of
waterproof materials. A stable rocket will always fly vertically,
so that the water inside will be propelled away from the rocket.
(Learn how to make a rocket stable in chapter 5.) Of course, use
a funnel, and be careful when filling, especially if you use balsa
or cardboard on your rocket.

Myth #6 — If the rocket holds together on the ground,
it will be strong enough during flight.

A typical rocket experiences 30 to 40 G’s of acceleration during
launch. This means that during a fraction of a second of the
flight, pieces of the rocket has the effective weight of 30 to 40
times their normal weight. For example, a 30 gram parachute
will weigh as if it were 900 to 1200 grams! If the platform that
supports the parachute is not strong enough to support this much
weight, it will likely break during launch. See chapters 13 and
14 to learn more about calculating a rocket’s acceleration using
computer simulations.

Myth #5 — The amount of water in a rocket has little
effect, as long as it is around 50%.
This is false for two reasons:

1. The amount of water has a great effect on the rocket’s
height. In bottle rockets, water is thrust, but it also adds



excess weight. You must reach a compromise between thrust
and weight to find the optimum water level.

2. 50% is too much water for a typical rocket. The optimum
water level varies for each rocket, depending on weight and
drag, but it is typically between 40% and 45% of the bottle’s
actual volume. (To learn how to calculate the optimum
water level using a simulator, see chapters 13 and 14.)

Myth #4 — Adding fins, no matter what type or where
they are placed, will improve a rocket’s height.
Height is a result of many factors—most importantly, stability.
Fins will improve stability only under two conditions:

1. The fins must be rigid. They must be able to “push”
against the wind, even when the rocket is travelling at
speeds over 80 MPH.

2. The fins must be located behind the center of gravity of
the rocket. Otherwise, they will have the opposite effect,
making the rocket less stable and decreasing the height.

See chapter 5 to learn how to determine the effictiveness of fins.

Myth #3 — Aluminum duct tape is good for attaching
fins.

Aluminum duct tape does not work for attaching fins. See myth
#4 above—fins must be rigid. If they can be bent back and forth,
they are not doing much good. For other parts, aluminum tape
is usually a waste of weight. Aluminum tape should only be used
sparingly, and only on moveable parts.

Myth #2 — Bigger parachutes are better.

Yes, bigger parachutes result in a longer time aloft, but bigger
parachutes cause extra problems: they are less reliable, they de-
ploy slower, and they are more likely to fly into trees. A large
parachute is not necessary for a flight in excess of one minute—a
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medium-sided parachute works fine (80 to 120 cm in diameter),
and it is much more reliable. Weight is more important factor—
you will have much more success if you use a light rocket with a
medium-sized parachute.

Myth #1 — Adding weight to the rocket’s nosecone will
increase the rocket’s time aloft.

Adding weight to a rocket’s nosecone improves stability, which
may improve the rocket’s height. But this weight is only benefi-
cial during the first four seconds of the launch. After apogee, as
the parachute opens and the rocket descends, the extra weight
causes the rocket to fall faster, decreasing the time aloft. There
is a way to have the same increase in height, without adding
weight: properly placed fins. See chapter 5 to learn more.



Chapter 2

Five Critical Factors

A good rocket design can be summarized in five words: reliability,
rigidness, precision, weight, and drag. There is no perfect rocket,
but the following five critical factors will ensure that your design
is as successful as possible. The factors are listed in their order of
importance. For example, do not add weight (#4) to a rocket to
decrease drag (#5), and do not select a material that is weighs
less (#4), unless it is strong (#2).

2.1 Reliability

Especially in the Science Olympiad competition, where rockets
are scored based on time aloft, reliability is critical. To con-
sistently score well, you must have a rocket which reaches its
maximum height, and has a parachute that reliabily deploys.
Remember, a rocket that consistently gets 20 seconds aloft will
on average, score higher than a rocket which reaches one minute,
but only works 20% of the time.

Simple designs are not necessarily the most reliable. A semi-
complex design, such as an airspeed-deployment system, tends
to be significantly more reliable than a rocket which relies on
gravity, but only if it is thoroughly tested. Testing is the key
to reliability. A reliable rocket is the result of thorough testing,

11



12 CHAPTER 2. FIVE CRITICAL FACTORS

both on the ground, before it is actually launched, and in the air,
through numerous launches.

2.2 Rigidness

Rigidness is the most commonly overlooked factor of rocket de-
sign, but it is one of the most critical. The simulators described
in later chapters will take the shape of the rocket and fins into
consideration. If the rocket or any part of the fins is able to flex,
there is no way to accurately calculate how it will perform in the
air.

Obviously the rocket cannot be perfectly rigid, since we are
building it out of light materials such as plastic and balsa wood,
but you should always make a reasonable attempt at rigidness.
A good test of rigidness is simply by handling your rocket. You
should be able to pick up your rocket by any part (fins and
nosecone included), handle it, shake it around, etc. ..and nothing
on the rocket should ever move. If it bends when you handle it, it
will definately bend under the 80 MPH of wind from the launch.

2.3 Precision

When working on a such a small scale like water rockets, preci-
sion is essential. On deployment systems like the airspeed-flap,
one millimeter of adjustment can make the difference between
a rocket that is 90% reliable and one that is only 10% or 20%.
Precision is also needed for the simulators—one centimeter will
make the difference between a stable and an unstable rocket.

Like rigidness, we must be realistic when measuring precision,
due to the materials we have to work with. If you take your
time when constructing pieces, and do it carefully with a sharp
knife, no part of the final rocket should vary by more than 2 or
3 millimeters from your plans.
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2.4 Weight

Weight is a misunderstood factor of rocket design. When used
in reasonable amounts (80 to 200 grams), rocket weight only has
a small effect on the rocket’s maximum height. Stability is far
more important.

Although the weight of a rocket does not significantly affect
its height, it has a great affect on its time aloft. As the parachute
on a rocket inflates, the rocket quickly slows down, until it reaches
its terminal velocity (which usually takes about 2 to 3 seconds).
Once the rocket has slowed to its terminal velocity, it contin-
ues to fall at this contant speed until it hits the ground. This
is where weight comes in—terminal velocity depends on weight
and parachute area-the more the rocket weighs, the greater its
terminal velocity, and the faster it will fall. As a general rule of
thumb, if you reduce the weight of your rocket by 3 grams, you
will increase its time aloft by 1 second.

2.5 Drag

Drag is the factor which primarily determines a rocket’s height.
It is important to design a rocket with low drag to reach its max-
imum height, because the higher a rocket is when the parachute
deploys, the longer it will stay aloft. Drag, however, is not as
important of a factor as weight—drag only affects the first four
seconds of the launch (from liftoff to apogee). Weight affects the
rocket for the rest of the flight, from apogee, until it touches the
ground.
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Chapter 3

Forces

So what makes a rocket fly? Of course, it is the pressurized air
inside the rocket that propels it upwards, but why does adding
water increase the height of the rocket? And how does the size
of the nozzle affect the rocket? To answer these questions, we
must look at the forces which affect the rocket during its flight.

This chapter provides a brief overview of the forces involved
with water rockets. In this chapter, we will only look at the
forces, not the actual formulas for calculating them. To learn
how to actually calculate these forces, see chapter 13, Simulators.

3.1 Liftoff

When the rocket is sitting on the launch pad, the nozzle of the
rocket typically fits over some type of rubber or metal stopper,
called a “launch rod.” For the first few tenths of a second, all of
the rocket’s propulsive forces are generated by the pressurized air
pushing against the launch rod. This pushes the rocket upwards,
until the rocket lifts off the launch pad. We call this the “launch
rod reaction force.”

While the launch rod reaction force may seem insignificant
(it only occurs for a fraction of a second), it becomes extremely
important when working with a simulator. As a simulator will

15
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show you, the rocket typically reaches a speed of over 10 MPH
before it ever leaves the launch pad.

The next force to consider is gravity—the force which pulls
the rocket towards the ground. If the launch rod reaction force
is not greater than the force of gravity, the rocket will not lift off
the ground.

The force of gravity is proportional to the rocket’s total mass.
At this point, the force of gravity is constant, since the mass is
not changing, but in the next stage, this force will be constantly
decreasing as water is expelled through the nozzle.

There is one last force to consider—drag. As the speed of the
rocket increases, there is a friction with the air, creating a force
in the opposite direction of the rocket’s movement.

Launch Rod Reaction Force

Gravity & Drag

Figure 3.1: Forces at Liftoff
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3.2 Launch

Our rocket has cleared the launch pad. We no longer have a
launch rod reaction force, but our propulsion now comes from
the water inside the bottle. The pressurized air pushes against
the surface of the water, causing the water to be expelled through
the nozzle of the bottle. This creates a propulsive force, pushing
the rocket upward.

Newton’s third law of motion states: “For every action there
is an equal, but opposite, reaction.” In this case, our action is
the expulsion of the water out of the nozzle, and our reaction is
the propulsive force on the rocket generated by our action.

Propultion from Water

Jid

—

Gravity & Drag

Figure 3.2: Forces during Launch
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3.3 Air Pulse

After all of the water has been propelled out of the rocket, the
“air pulse” occurs. The air pulse is caused by the remaining air
pressure in the bottle leaving through the nozzle, much like the
water did earlier. This force is not nearly as great as the one
generated by the water, but it is important to consider it.

Air Pulse

—

Gravity & Drag

Figure 3.3: Forces during Air Pulse
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3.4 Glide

From this point on, our rocket no longer has any propulsive forces.
Since it already has so much speed built up, it continues travelling
upward, until the forces of drag and gravity finally bring the
rocket to a stop. The point at which the rocket’s velocity is zero
is called “apogee.”

Gravity & Drag

Figure 3.4: Forces during Glide
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3.5 Descent

After apogee, the rocket begins to descend. The force of gravity
is the same, but one important change has occurred—drag is now
an upward force, since drag is always in the opposite direction
of the path of the rocket. In addition, we must now consider
the drag created by not only the rocket, but also the parachute.
From this point on, drag is the force that prevents the rocket from
gaining too much speed as it descends. Otherwise, the force of
gravity would pull the rocket to the ground in a matter of seconds.

Drag

Figure 3.5: Forces during Descent



Chapter 4

Stability

Stability is the single most important factor in rocket design, and
it is also the most commonly overlooked. A stable rocket not only
goes much higher than one that is only moderately stable, but it
also has a much smoother flight, reducing the chance of parachute
failures.

One common way to improve the stability is to add weight to
the rocket, which does improve the stability (you will understand
why later), but a much better way to improve stability is by
adding fins. This is not a simple task though. Before adding fins,
it is important to understand the factors which contribute to the
efficiency of the fins. A rocket with large fins is not necessarily
more stable than one with small fins—it depends on the shape
and position of the fins, and the shape and weight of the rocket
itself. Understanding rocket stability will allow you to make a
stable rocket while using the smallest fins, and adding the least
amount of excess weight and drag to the rocket.

4.1 What is Stability?

Stability does not necessarily mean to fly in a straight line, or
to fly vertically—it is the tendency of a rocket to rotate towards
the relative wind. The relative wind is the wind “felt” on the

21
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front of the rocket as it is moving. For example, if the rocket was
moving at 50 MPH on a windless day, it would “feel” 50 MPH of
wind on the front of the rocket, meaning there is a relative wind
of 50 MPH. The relative wind is relative to the movement of the
rocket. The relative wind is always in the opposite direction of
the rocket.

4.2 Swing Test

One method of determining rocket stability is the swing test. The
swing test is done on a ready-to-fly rocket by attaching a string
to it on the point where it balances and then swinging it in a
large circle (about 10 feet). If the rocket points in the direction
that it is swinging, the rocket is probably stable.

The swing test has two major downfalls. First, it can only
be done on a ready-to-fly rocket. The only way to test different
fin configurations is to actually build the fins and attach them
to the rocket. This is not only time-consuming, but can also get
expensive—balsa wood is not cheap. The second downfall of the
swing test is that it is not an accurate simulation of a rocket’s
flight. A rocket never actually experiences circular motion as it
does in the swing test. Sometimes, a rocket can fail the swing
test, but actually be stable when it is launched.

4.3 Center of Gravity and Center of Pres-
sure

Before we look at more advanced methods of calculating stability,
we must understand two points and how they contribute to rocket
stability: the center of gravity (CG) and the center of pressure
(CP).

The center of gravity is the center of the mass of a ready-to-fly
rocket. It is the point where the rocket balances, and the point at
which it rotates during flight. The center of gravity can either be
measured by experimentation (finding the balancing point of the
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rocket using string or your finger), or by using force-balancing
equations (see any introductory physics textbook).

Just as the center of gravity is the point where the gravita-
tional forces of the rocket balance, there is also a point at which
the aerodynamic forces (such as wind resistance) balance. This
point is called the center of pressure.

The center of pressure is not nearly as easy to calculate as the
center of gravity. Without sophisticated equipment, there is no
way to experimentally determine the center of pressure, but there
are two mathematical methods to accurately estimate the point:
the cross-section method and the Barrowman equations, which
will be explained in the next section. The benefit of mathemati-
cally calculating the center of pressure, and using force-balancing
equations to find the center of gravity, is that we can predict how
a rocket will fly from the plans for it, without actually building
the rocket. If we find out that the rocket is not stable, we can
make changes to the plans before we start building the rocket.

In a stable rocket, the center of pressure must be located
aft of the center of gravity. This is because the aerodynamic
forces centered at the center of pressure are in the direction of
the relative wind (the opposite direction of the rocket). If the
rocket is moving up, the aerodynamic forces are pushing down
on it.

Now, let’s look at how these forces work in flight. The rocket
starts off pointing into the relative wind, but eventually, some
unpredictable force (uneven drag on the rocket, a small gust of
wind, etc.) will cause the rocket to stray from its course. If
the center of pressure is located aft of the center of gravity, the
aerodynamic forces will work to pull the bottom of the rocket
back in line with the relative wind, pointing the rocket back in
the direction of the relative wind. This makes a stable rocket. If
the center of pressure were foreward of the center of gravity, the
opposite would happen. The aerodynamic forces would pull the
nose in the opposite direction that it should move, causing the
rocket to spin out of control—an unstable rocket.

A rocket is not necessarily stable or unstable. There are many



24 CHAPTER 4. STABILITY

Stable Rocket

CP is located aft of CG
Aerodynamic forces work to right rocket

N Aerodynamic Forces

Unstable Rocket

CP is located forward of CG
Aerodynamic forces work against righting
Rocket will spin out of contro

0
oy

Aerodynamic Forces

Figure 4.1: The position of the CP in relation to the CG deter-
mines stability
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different “degrees” of stability—one rocket can be more stable
than another. Rocket stability is compared using body calibers.
One caliber is equal to the maximum diameter of the rocket (the
actual round body, not including fins and other protrustions).
The distance between the CP and the CG is referred to as the
static stability margin!. Thus, if the static stability margin is
equal to the diameter of the rocket, the rocket has one caliber of
stability.

In general, one caliber of stability or greater means the rocket
is stable. A negative stability indicates that the rocket is un-
stable—it will likely spin out of control, and only get about 30
feet of altitude.

There is one other factor to consider—a rocket that is “too
stable.” Yes, this is possible. Normal stabilities range from one
to three calibers, but too much higher can result in a rocket
that is too stable. This can happen when there is a crosswind
at the launch site. This crosswind becomes a component in the
relative wind, and will cause the rocket to point into the wind,
launching off to the side instead of perfectly vertical. The higher
the stability of the rocket, the more likely it is to follow the
crosswind.

4.4 Cross-Section Method

The simplest method of determining the center of pressure is
the cross-section method. If you take a cross-section through
the center of your rocket, from the tip of the nosecone, straight
down through the nozzle, the center of the surface area of this
cross-section will be the center of pressure. You can either find
this mathematically, by breaking it up into rectangles, triangles,
and other geometric shapes, or you can actually trace your cross-
section on a piece of cardboard or other firm material, and find
the balancing point of the cardboard. The point where the card-

LA positive static stability margin indicates that the CP is aft of the CG;
a negative means that the CP is forward of the CG



26 CHAPTER 4. STABILITY

Sum of Top
65 + 190 + 5 + 5 265

A=190

- _ _ _. A=5 ~ __  __ __ _ _ _

Sum of Bottom
90 + 50 + 90 + 35 = 265

Figure 4.2: The Cross-Section Method finds the center of the
surface area of a cross-section of a rocket

board balances (the center of gravity of the cardboard) is also
the center of its surface area.

There are two main downfalls to this method. First, finding
the center of the surface area can be time-consuming. It takes
only a few minutes to make the calculations, but it often takes
five or ten modifications to a rocket’s design before you get the
stability just right. A few minutes can quickly turn into a few
hours when repeating the calculations over and over again. Sec-
ond, this method has no way to calculate the effect of different
numbers of fins on a rocket. Using the cross-section method, a
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rocket with three fins has the same stability as a rocket with
four fins, as long as the fins are the same shape and size. Obvi-
ously, the one with four fins is more stable, but remember, the
cross-section method is only an approximation.

4.5 Barrowman Equations

The most accurate center of pressure calculations come from
what are know as the Barrowman Equations. These are a set
of equations, developed by aeronautical engineer James Barrow-
man, which are used to estimate the center of pressure of subsonic
rockets. For bottle rockets, which do not even exceed 100 MPH,
these equations are more than accurate enough. The best way
to use the Barrowman Equations is using a computer simulator,
because it will allow you to try different modifications to your
rocket to fine-tune its stability. The Barrowman Equations are
used commonly by rocket hobbyists, so there is a lot of informa-
tion about them available on the Internet.

The best calculator for the Barrowman Equations is the VCP
CP/CG Calculator, available for download as freeware on the
Internet. VCP allows you to enter your rocket as a series of
body sections of varying diameters and masses, add a nosecone
and fins, and determine both the center of gravity and center of
pressure with a single program. VCP’s coordinate system takes
a while to familiarize yourself with, but it is well worth the effort.

4.6 Stability Tips

4.6.1 Bottle Shape Affects Stability

One important factor in designing a stable rocket is considering
the stability of the bottles used. Different bottles have different
natural stabilities. Bottles with a short center-section and a long
neck have a naturally high center of gravity. High, that is, if it is
used as a rocket; low if the bottle is sitting on a shelf. Many of the
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newer bottles are designed this way, because they are less likely
to tip over. When we flip the bottle upside-down, to be used as
a rocket, this shape works to our benefit, because the center of
gravity is already high in the rocket, resulting in smaller fins and
less weight that has to be added to make a stable rocket.

4.6.2 Semi-Stable Rockets

One theory in rocket design is to design a rocket that is stable
when the nosecone is attached and the parachutes are packed,
but with a rocket body that has a negative stability on its own.
This can take much fine-tuning in the simulator before it is ever
built, but it can be worth the effort when the rocket is actually
launched. Semi-stable rockets, such as these, seem to launch
normally, like an ordinary stable rocket, but if the parachutes
fail during the decent, these rockets decend on their side, due
to the body’s negative stability, which creates enough drag to
drastically slow the rocket down. Not only does this result in a
longer time aloft (10 to 15 seconds, versus 6 to 8 with a fully
stable rocket), but also causes less damage to the rocket during
a crash-landing.

There is one problem with this design: some larger parachutes
require the rocket to be falling fast before the parachute will
deploy. The parachute may not open until the rocket loses most
of its height, or the parachute may not open at all. Problems
such as these can sometimes be fixed by using a drogue chute,
which will be discussed later.



Chapter 5

Simulator Data

Chapter 13 explains the mathmatics in creating a computer sim-
ulator for water rockets. Even without understanding how these
simulators work, we can still use the results from a typical simu-
lator to learn how to use this data to build an optimum rocket.

Simulators are great tools for designing water rockets, because
they allow you to test numerous factors, such as mass, water level,
and parachute size, without the hours of launching required to
do traditional experimentation.

There are numerous simulators available on the Internet, which
work similar to the methods described in chapter 13. See the
Further Reading section for more information.

29
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5.1 Typical Launch

We will start by looking at the height, velocity, and acceleration
of a typical launch. For this demonstration, we will use a 120
gram, 2 liter rocket with a 1 meter diameter parachute, launched
with 40% water at a pressure of 60 PSI. We will also assume that
it takes 1 second for the parachute to fully deploy.
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5.1.1 Height
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Figure 5.1: Height of the rocket during a typical launch

The height graph provides some interesting data. First and
foremost, you should notice that this rocket will stay aloft for 25
seconds (assuming the parachute deploys properly and there is
no wind). Next, notice the peak on the left side of the graph—
here, the rocket reaches apogee about 3 seconds into the flight,
at a height of 170 feet. Afterwards, the rocket begins to pick
up speed as the parachute deploys. The rocket loses 15 to 20
feet of altitude before the parachute fully deploys, and the rocket
decends at a constant velocity thereafter.
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5.1.2 Velocity

Velocity (MPH)

i A 10. 20. 30.
Elapsed Time (sec.)

Figure 5.2: Velocity of the rocket during a typical launch

The velocity graph provides two important pieces of data:
maximum velocity and descent velocity. For this rocket, the max-
imum velocity is 84 MPH. This velocity occurs not at apogee, but
a few tenths of a second into the flight. Apogee occurs when the
velocity is 0 MPH. Once the parachute opens, the rocket slows
to its decent velocity, in this case, about -4 MPH. This decent
velocity is one of the most critical factors in designing a winning
rocket—the slower the rocket falls, the longer it is going to stay
aloft.
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5.1.3 Acceleration
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Figure 5.3: Acceleration of the rocket during a typical launch

Notice that the acceleration graph has two spikes in it—a
large one a few tenths of a second after launch, and a second,
smaller one about 4 seconds into the flight.

The first spike is the important one—it indicates the maxi-
mum acceleration of the rocket due to the propulsion of the pres-
surized air and water. During this launch, the rocket will experi-
ence 28 G’s, or 28 times the force of gravity, as it ascends. This
value is important to consider when building rockets—a small,
30 gram parachute, will have the effective weight of 30 x 28 = 840
grams during launch! If the parachute hold is not strong enough
to support the weight of 840 grams, it will likely break.

The second spike is caused by the rocket slowing down as
the parachute inflates. The value of this spike is typically not
important, because it is small compared to the acceleration due
to the pressurized air and water.
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5.2 Water Volume

Simulators are great for finding the optimum water level for a
rocket. Sure, you could test your rocket with various amounts of
water to find the optimum level, but that would be tedius. Plus,
accurate testing is often not possible, because wind and other
uncontrollable factors get in the way.

Finding the optimum water level is important. Most people
typically use around 50%, but you can usually get an extra 10
to 20 feet of height by finding the optimum water level (typically
40% to 45% of the bottle’s volume). A few feet may not sound
like much, but since a typical rocket with a parachute decends at
2 to 3 feet per second, this extra height results in another 5 to
10 seconds of time aloft.

Comparing the two graphs on the next page illustrates an im-
portant point about optimum water levels—it varies depending
on the rocket. Heavier rockets, and ones with greater drag, re-
quire a greater volume of water to reach their maximum height.
For most rockets, the optimum volume will be 40% to 45% of the
volume of the bottle.

Once you find the optimum water level for your rocket, it
is important to be able to consistently measure that volume of
water into your rocket. See Appendix A, Water Markings, to
see a simple system for measuring the water level inside your
pressurized bottle.

5.3 Mass

Just as there is an optimum water volume to get the maximum
height, there is an optimum mass to reach the maximum height.
This optimum mass varies, depending on the rocket’s drag.

The optimum mass for rockets is typically very low. Very
rarely will you have to add weight to your rocket to reach the
optimum mass. Normally, a stable, aerodynamic rocket with
parachute weighs more than the optimum mass, but this value
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Figure 5.4: Optimizing water volume for a 120 gram, 2 liter
rocket
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Figure 5.5: Optimizing water volume for a 250 gram, 2 liter
rocket
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Figure 5.6: Optimizing mass for a 2 liter rocket with 0.2 drag
coefficient
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Figure 5.7: Optimizing mass for a 2 liter rocket with 0.5 drag
coefficient
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will give you a good goal for the weight of your rockets.

As you can see from the graphs on the previous page, the
optimum mass for a 2 liter rocket is typically between 75 and
125 grams. These values are deceptive though—these are the op-
timum masses to get the maximum height. The optimum mass
to get the maximum time aloft is typically much lighter, because
weight causes the rocket to fall faster, especially when it is de-
cending with a lot of drag (when the parachute opens). It is
better to have a light rocket decend from an altitude of only 100
feet, as opposed to a heavy rocket decending from 120 feet.

ig.

60. .
50. -
40. T

30. B

Time Aloft (sec)

i0.

50. 75. 1060, 125, 150. 175. 200. 225. 250, 275. 300.
Rocket Mass (grams)

Figure 5.8: Optimum mass can be deceptive—under certain con-
ditions, additional weight will increase height, but it will actually
cause the rocket to fall faster.

If your rocket weighs less than the optimum mass, there is a
simple solution: bring your rocket up to weight by adding addi-
tional parachute. This will not only increase the height of your
rocket, but it will also result in a slower decent and longer time
aloft.
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Part 11

Rocket Construction
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Chapter 6
Fins

In Chapter 4, we learned to calculate the shape and size of fins
for a rocket, but building them can be another challenge.
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Figure 6.1: Fin Dimensions and Terminology
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We will start by looking at the simplest fins, single-ply fins.
These work well for rockets which need only small fins to make
them stable, but as rockets are built larger and lighter, they
require larger fins that must be reinforced. We will look at these
“3-dimensional” fins too.

6.1 Single-Ply Fins

A single sheet of light plastic or wood is adequate for most basic
fin designs. (1/16" inch balsa wood works best) They are the
simplest and easiest to fins to make, but they have a weakness:
plastic will bend and balsa will break.

6.1.1 Fin Patterns

One useful tip before constructing a set of fins is to make a pat-
tern on a sheet of paper. Be sure to keep it in a folder or other
safe place, because you will need it to build replacement fins.
Single-ply fins usually last only a few launches, so it is best to
plan ahead and build extras.

Also, a fin pattern can be useful for building fins with various
angles. Simply make a copy of the fin pattern, cut it out, and
trace it on to the material.

6.1.2 Constructing

Building fins is simply a matter of taking your time and carefully
cutting the balsa with a sharp knife, but there is one important
tip when constructing fins: When using wood, always cut
fins with the grain of the wood parallel to the leading
edge! This makes fins much stronger and less likely to break
during flight.
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Figure 6.2: A sample, single-ply fin pattern from The Hornet

6.1.3 Breaking Point

As we said before, the downside of single-ply fins is their low
breaking point. As a general rule, on a normal rocket, launched
at 60 PSI, the maximum span of a single-ply balsa fin is between
10 and 15 cm. Remember, this rule applies when the grain is
cut parallel to the leading edge. Fins with grains cut in other
directions sometimes fail with a span only 5 to 10 cm.

Since the 10 to 15 cm rule applies to 1/ 16" inch balsa wood,
you can sometimes get away with a few extra centimeters of span
by using 3/32°%. This is usually not a good idea, because it adds
extra drag and weight. 3-dimensional fins are usually a better
solution.

An important sign of fins that are approaching their break-
ing point is “fluttering.” Fluttering occurs when the air traveling
over the fins causes intense vibrations and will lead to structural
failure. Sometimes fluttering is minimal, and only causes a hum-
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ming noise as the rocket lifts off, but take this as a warning—
when fluttering gets too bad, the fins will rip apart.

6.2 Reinforced Balsa Fins

Reinforced fins, or “3-dimensional fins,” are made of three sep-
arate layers of balsa wood glued together to form a strong, but
light fin. Reinforced fins have much more strength than single-ply
fins, and can be used when extra stability is needed.

Figure 6.3: Internal balsa structure of a reinforced fin

Reinforced fins are constructed using two strips of 1/16" inch
balsa wood, approximately 1/2 to 3/4 of an inch in width and
have a length of about 2/3'% of the span of the fin. A third,
smaller piece of 1/ 16" inch balsa is placed in between the other
two strips, to increase the thickness of the fin at the root. As
usual, make sure the grain of the wood is parallel to the leading
edge.

The internal structure is then covered with 1/32"¢ inch balsa
wood, which makes up the actual surface of the fin. The two
pieces are first glued to the internal structure, then their edges
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are glued together. (1/32" balsa is very flexible) For decreased
drag, the edges of the fin can later be sanded down to a smooth
edge.

6.3 Other Materials

Fins do not necessarily have to be made from balsa wood. Balsa
is simply a light material that is relatively easy to work with.
Any type of plastic, cardboard, or other material can be used for
fins, as long as it is rigid. Remember, the stability simulations in
the previous chapter assume that the fins on the rocket are rigid.
Fins that are not rigid will have no effect on a rocket’s stability.

6.4 Attaching Fins to Rockets

A good fin is useless unless it is attached to the rocket well. Like
a fin, the joint should be rigid, and prevent the fin from moving
around. Materials such as duct tape (even aluminum tape) do
not work well, because they allow the fin to move back and forth
during flight, making the fin useless.

The best way to attach fins to a rocket is by using a strong
glue, such as a super glue or hot glue. Medium-set Jet glue works
best.

Unfortunately, Science Olympiad rules prohibit using super
glues or hot glues directly on the pressurized bottle. We can
work around this by cutting strips of plastic from another bottle.
The strips should be the length of the fin, and about one inch
wide. Before using super glue on the plastic, be sure to
thoroughly sand it with a light sandpaper (500 grit or
lighter), until the plastic becomes translucent. Otherwise,
the glue will not stick to the plastic! Apply a few drops of glue
to the plastic and set the fin in place. Once the glue hardens,
apply a full bead of glue to each side of the fin for extra strength.

Now you can attach the strips of plastic to the rocket using
mailing or packaging tape. (Scotch extra-strength mailing tape
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works well.) When taping fins to the rocket, be sure to
completely cover the top of the plastic strip with tape!
If the top of the strip is not taped, air can get underneath during
launch, and the fin will rip off.

6.5 Extra Reinforcement

Although super glue works well for attaching fins to rockets, this
joint can never be too strong. Remember, by Science Olympiad
rules, if the fin breaks off during launch, the rocket is automati-
cally disqualified.

For extra reinforcement, a flexible, caulk-like glue works well.
After the super glue has dried, run a small bead along each edge
of the joint, and let it dry for at least 24 hours.
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Parachutes

Once we have covered the basics, and can build a rocket that is
stable, it is time to start working on the next aspect: parachutes.
A simple plastic bag will work if you’re only looking for a few
seconds aloft, but a competitive rocket requires a much better
parachute. As you will see, building a good parachute can be as
complicated as building the rocket itself.

7.1 Dome Parachutes

First, we will look at dome parachutes. These parachutes are
made from multiple panels of fabric, sewn together to form a
dome shape—far more efficient than the typical flat parachutes
used in model rocket kits.

Parachutes work by trapping air to create drag. For a flat
parachute to work, it must first inflate, by forming a domed shape
to catch the air. When this happens, only half of the parachute
is used to trap air, while the other half flaps around uselessly. A
dome-shaped parachute solves this by “fitting” the shape of the
air, so all of the parachute’s surface area is used.

47
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Figure 7.1: A 6-panel dome-shaped parachute

Dome-shaped parachutes are constructed out of three or more
pieces of material (usually plastic). These panels are attached
together like a beach ball, with panels attached side to side, with
every panel meeting at a single point at the top. There is no
exact formula for determining the number of panels needed for a
parachute, but here are some typical values:

Parachute Diameter | Parachute Type | Typical Number of Panels
< 40 cm Small Drogue 4
40 - 60 cm Large Drogue 6
60 - 100 cm 1-Liter 8
100 - 130 cm 2-Liter 8

A top view of the parachute shows how the panels are con-
nected. The panels of a 6-panel parachute appear to be six tri-
angles, but the panels are not actually triangular. They are flat-
tened out spherical triangles—the sides are no longer straight
when mapped in two dimensions.

Although dome-shaped parachutes work extremely well, there
is still a way to improve them further: elliptical parachutes.
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Figure 7.2: Left: A top view of a 6-panel dome-shaped parachute.
Right: A single panel of the same parachute. Notice that the
panel is no longer triangular-shaped when it is laid flat.

7.2 Elliptical Parachutes

Elliptical parachutes are essentially stretched-out versions of dome
parachutes. They allow the parachute builder to make a larger
parachute with the same amount of material. Thus, elliptical
parachutes are lighter and deploy faster than their equivalent
dome-shaped parachute.

In a dome-shaped parachute, the radius equals the height,
but in an elliptical parachute, the height is less than the radius
(typically 70% of the radius). This ratio has a give-and-take
effect. As the height decreases, the parachute requires less ma-
terial, but loses efficiency. Eventually, if the height is decreased
all the way to zero, we are back to a circular parachute.

7.3 Constructing a Panel
The first step in building a parachute (either dome or elliptical)

is to build a pattern for one panel of the parachute. For now, we
will assume that you already have the coordinates that form the
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curve of your panel—in Part III you will learn how to calculate
coordinates for parachutes of any shape and size.

Here is the output from a parachute calculator. We will use
these values to construct our pattern:

Diameter: 100 cm

Height: 50 cm

Bottom Overhang: 10 cm

# of Panels: 8

# of Calculated Points: 10

Panel Coordinates:

(+/- 0.00 cm, 78.54 cm)
(+/- 3.41 cm, 69.81 cm)
(+/- 6.72 cm, 61.09 cm)
(+/- 9.82 cm, 52.36 cm)
(+/- 12.62 cm, 43.63 cm)
(+/- 15.04 cm, 34.91 cm)
(+/- 17.00 cm, 26.18 cm)
(+/- 18.45 cm, 17.45 cm)
(+/- 19.34 cm, 8.73 cm)
(+/- 19.63 cm, 0.00 cm)

Vertex of Overhang Arc: (0 cm, 14.28 cm)
Radius of Arc: 24.28 cm
Angle of Arc: 1.8842 radians

To construct our pattern, first, find a large enough piece of
posterboard. (You can use heavy paper, but posterboard works
best) Also, this posterboard needs to be white, or another light
color—you will be making a lot of pencil marks on it before we
get to our actual shape.

To determine the size we need, look at our panel coordinates:
the = values range from —19.63 to 19.63, thus we need a width
of about 40 cm. Our y values range from 0 to 78.54, but notice
that we have an overhang of 10 ¢m, so we actually need a height
of about 90 cm.
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Once we have our posterboard, we need to draw our x- and
y-axis. It is important that these are perpendicular, because we
will base all of our other measurements on them. Make sure that
they are perpendicular by using the corner of a sheet of paper to
mark the right angle. As we stated before, our x-axis needs to
range from —19.63 to 19.63 cm, and our y-axis needs to range
from —10 to 78.54 cm. You can always make the axes longer
than these measurements—those are just how much our pattern
will occupy.

>

Figure 7.3: Axes for our 100 cm dome parachute
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Figure 7.4: Completed pattern for a 100 cm dome parachute
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Once we have our axes, we can mark off our y values on our
y-axis. These should be equidistant, as we will show in our next
chapter.

Once we have our y values marked, the next step is to mea-
sure out the corresponding = values and mark our points on the
posterboard. Connecting these points should give us the curved
sides of our panel.

Finally, we construct our overhang. Overhang is an arc, so
we must first find and mark this coordinate, (0, 14.28), on our
posterboard. Next, construct the arc using a compass. If it is
large parachute, as in this case, a standard compass will not be
large enough. You will have to use two pencils and a piece of
string. (A piece of posterboard with holes punched in each end
also works well.)

Now, we can cut out our pattern and use it to trace onto
our panel material. Use a dark marker to trace your pattern
onto your material. When cutting, do not cut directly on
the lines! You must leave room for a seam to attach panels
with. The width of this seam depends on the method you will
be using to attach panels together. Also, if you will be using a
soldering iron or wood burner, you will cut the panels and melt
them together at the same time, so do not cut them out yet.

7.4 Methods of Construction

7.4.1 Glue or Tape

Glue or tape can be used to attach panels together, but it does
not work well. Tape and glue both add a great deal of weight to
the parachute, and make the parachute stiff.

7.4.2 Iron

Panels can be melted together using an iron. Place two pan-
els, one on top of another, on an ironing board, and place your
posterboard pattern between the two pieces of plastic. This will
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prevent the panels from melting together anywhere except for the
seams, which will be hanging over the edge of the pattern. Cover
both of these with a cloth or towel, and then iron the seam for
10 to 20 seconds. Allow a few seconds for the plastic to dry, then
pull out the towel and the pattern. The plastic panels should
be melted along the seam into a single piece of plastic. If not,
repeat the same process and try again.

7.4.3 Soldering Iron or Woodburner

The best way to attach panels together is to use a low-power
soldering iron or woodburner. This method creates the small-
est seam, compared to the other methods, and thus, creates the
lightest parachute with the most flexibility.
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Figure 7.5: Using a metal ruler and soldering iron to attach
parachute panels
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If your soldering iron or woodburner is too hot, causing the
plastic to melt too fast, you can reduce the power by installing a
dimmer switch, used for lights, to reduce the power.

Take two panels (do not cut them out), and lay them on top of
each other so that the lines you traced from the pattern overlap.
Working piece-by—piece along the curve, take a metal ruler and
hold it along the line. While pressing down on the metal ruler,
run the soldering iron along the ruler’s edge. It should make
a nice cut, approximately 1 mm in width, and in the process,
it will melt the edge of the two pieces of plastic together. If the
soldering iron cuts through the plastic without melting the panels
together, increase the temperature of the soldering iron.

Repeat this process to attach all of the panels together, mak-
ing sure that the seams are all on the same side. If the parachute
is made carefully enough, the tops of the panels will meet in a
single point, and a top panel will not be needed.

7.5 Shroud Lines

Shroud lines are attached to the bottommost point on each panel
of the parachute (in the overhang area). The very purpose of
the overhang is to attach shroud lines—they help to distribute
the force of the shroud lines, and prevent them from pulling the
parachute closed.

To attach shroud lines, first place a piece of tape where you
want to attach the line. Do this on both sides of the plastic.
Then, use a hole punch to cut a hole through both layers of tape
and the plastic. Do not use scissors to cut the hole! A round
hole is less likely to tear when the shrouds are pulled tight.

For an even stronger hole for attaching shrouds, touch the
tape with a hot woodburner or soldering iron. This will melt a
hole through the parachute and both pieces of tape, but it will
also cause some of the plastic to bead up around the edge of
the hole. Once cooled, this will form a hard, protective ring and
prevent tearing of the parachute.
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Many different materials can be used for parachute shroud
lines. Most types of string work fine, but of course, the stronger
and lighter, the better. Do not use fishing line. Fishing line tends
to hold its shape, and not want to flex. It is more likely to get
caught or tangled than regular string.

Dacron is one of the best shroud materials available, not only
because it is strong and light, but because it does not hold its
shape when coiled for a long period of time. Dacron can be found
in many stores and hobby shops, often sold as kite string.

Shroud length is also an important consideration. Typically,
shrouds should be 2 to 21, times the diameter of the parachute,
but this is often not practical for Science Olympiad rockets, which
have a maximum length of 3 meters. Usually, shrouds that are 1
to 115 times the diameter will suffice, and allow you to put the
largest parachute possible within the 3 meter limit.



Chapter 8

Parachute Deployment
Systems

The best parachute is dead weight without a good parachute
deployment system. This is the most critical part of any rocket,
since it determines the difference between a one minute launch
and a six second launch.

There are many different methods for deploying a parachute
on a bottle rocket, ranging from the simplest gravity system to
a complex airspeed flap design. We will look at both of these
deployment systems and how they work.

These are not the only two reliable ways to deploy a parachute.
Other methods, such as using a balloon or wind-up timer, can
be found on the Internet. See the Further Reading section for
helpful links to get started.

8.1 Gravity Deployment

The theory behind gravity deployment is simple: heavier things
fall faster!. Therefore, if the rocket body weighs 60 grams, but

!The laws of physics may appear to contradict this statement, but only in
a vacuum. When forces such as wind resistance are taken into consideration,
heavier things fall faster

o7
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the nosecone weighs 80 grams, the nosecone will fall faster, sep-
arating from the nosecone. Then, if the length of the string at-
taching the nosecone to the body of the rocket is longer than the
total length of the parachute (including shrouds), the parachute
will deploy.

This system is the “quick and easy” way to get a parachute
deployed on a bottle rocket, but it has three major downfalls:
First, this system is not very reliable—even if you have a great
difference in the weight of the body and nosecone, there will still
be occasional failures for no reason. Second, this system requires
a long string for the nosecone, which under the Science Olympiad
limit of 3 meters, drastically reduces the parachute size that you
can use. Third, rockets that use this system are heavy! For a
realiable rocket, you will need the weight of the nosecone to the
body in at least a 2:1 ratio (e.g. a 200 gram nosecone with a 100
gram body). The very principle that makes this system work is
what makes it so unusable—a 300 gram rocket falls fast, even
with a parachute?.

8.2 Airspeed Flap Deployment System

The airspeed flap solves all the problems of gravity deployment—
once it is finely tuned, it is extremely reliable, adds no additional
length to the rocket, and it adds only a mere 5 to 10 grams to
the weight of the rocket.

The airspeed flap was originally designed by Dave Johnson,
but there are now many variations of its design. The design
presented here is a unique variation developed by Columbus High
School. For more information on Dave Johnson’s original system,
you can find the address of his web site in the Further Reading
section of the handbook.

20ur record for a gravity-deployed rocket is 23 seconds
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Figure 8.1: A typical Airspeed Flap Deployment System
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The main component of this system is the airspeed flap—
a small flap of plastic (made from the mid-section of an empty
bottle) that is hinged at the top and attached to the side of the
rocket body. This airspeed flap will be held against the rocket
body by the force of the wind during launch. At apogee, the
wind will no longer be strong enough to hold the flap down, so
it will open, and release the nosecone.

To prevent the main airspeed flap from deploying while the
rocket is on the launch pad, a trigger flap is used. The trigger
flap is released by the force of the wind from liftoff.

The nosecone sits on top of the rocket, and is held in place
by two rubber bands—one on each side. One rubber band is
attached to the rocket body, while the other is hooked on to the
main airspeed flap. These rubberbands work as opposing forces—
if they are tensioned properly, they will hold the nosecone in place
during the launch. Once the main airspeed flap opens, the rubber
band attached to it will be released. The nosecone will be pulled
off by the rubber band on the other side, releasing the parachute.

8.2.1 Platform

Before constructing an airspeed flap deployment system, you
must first flatten out the top of the rocket body using a plat-
form made of light cardboard or plastic. The parachute will sit
on top of this platform.

To prevent the nosecone from slipping off of the platform
during launch, cut a small ring out of the mid-section of another
bottle. Mount the ring around the platform, leaving only 1/8%}
to 1/4'" of an inch protruding above the platform.
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Figure 8.2: A platform with nosecone ring

8.2.2 Nosecone

As stated above, the nosecone should have a rubber band at-
tached to each side of it—one will be attached to the rocket
body; the other to the main airspeed flap. Place another rubber
band on the inside of the nosecone. Once there is a parachute
on the platform, this rubber band will act as a “spring” to push
the nosecone off. For even better results, use two rubber bands
on the inside, and attached them in a cross.

8.2.3 Main Airspeed Flap

The main airspeed flap is constructed from the mid-section of
another bottle and hinged at the top. The main airspeed flap
should have two pins attached to it. You make these pins from
paperclips or wire, or you can replace the pins with plastic to
avoid using metal parts. The first pin is located near the top,
and is perpendicular to the surface of the flap. This pin will be
used to hook the rubber band going to the nosecone. The second
pin is located at the bottom of the flap, pointing down. The
purpose of this pin will be explained in the next section on the
trigger flap.
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Hinge

Release Pin

Trigger Pin

Figure 8.3: Main Airspeed Flap
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8.2.4 Trigger Flap

The purpose of the trigger flap is to hold the main airspeed flap
down while the rocket is on the launch pad. It can be made of
a small hinge, with a hole drilled on one side. The pin from the
bottom of the airspeed flap can be placed through this hole to
hold the main flap in place. During launch, the trigger flap will
be forced down by the wind, releasing the main airspeed flap.

Figure 8.4: Trigger Flap and Trigger Pin

| (]

Before Launch Liftoff
Main Flap is held in Trigger Flap is pushed back by wind;
place by Trigger Flap Main Flap is released

Figure 8.5: The Trigger Flap releases the Main Airspeed Flap
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8.2.5 Tensioning the Rubber Bands

The airspeed flap deployment system only works if the rubber
bands are tensioned properly. The best way to test it is by setting
the main airspeed and trigger flaps, then blowing on the flaps to
simulate the wind from the launch. With one large breath, you
should be able to release the trigger flap and still hold the main
airspeed flap down. If the rubber bands are tensioned right, the
nosecone will spring off as soon as you stop blowing on the main
airspeed flap. If not, try different combinations of rubber bands
to get the right tensions.

8.3 Airspeed Flap With Drogue

To further improve the airspeed flap design, we can add a second
parachute compartment and a drogue parachute to the design. A
drogue parachute (typically 30 to 50 cm in diameter) is designed
to deploy quickly. When it is attached to the top of the main
parachute, the drogue will help to inflate the main parachute
faster. For consistent, quick deploys of large parachutes, use an
airspeed flap to deploy the drogue chute and let the drogue pull
the main chute out of its compartment.
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Figure 8.6: Typical Airspeed Flap Deployment System with
Drogue Parachute
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More Parachute Tips

9.1 Packing Parachutes

The best way to pack a parachute is using the “z-fold.” Hold
the parachute from the top and stretch it out into a long roll.
Then, fold the parachute back and forth every two to three inches,
depending on the size of your parachute hold.

At competition, it may be necessary to pack your parachute
before competition, hours before it is actually launched. If this is
the case, sprinkle baby powder over the entire parachute (inside
and outside) before you fold it, and continue to sprinkle baby
powder as you fold the parachute. Baby powder will help prevent
the plastic from sticking together. It is best to test this a few
times before competition, to make sure the parachute does not
expand or get stuck in the parachute hold.

9.2 Testing Parachutes

Sometimes, you may have to test your rocket in less—than—ideal
conditions. If the wind gets too heavy, and could possibly blow
the rocket into nearby trees or obstructions, it is best to test
the rocket without using full parachutes. Testing with smaller
parachutes is a possibility, but on light rockets, parachutes are
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used as ballast, and they are critical to a rocket’s stability. It is
better to test with full parachutes, while restricting the parachute
from fully opening with a twist-tie. To do this, stretch the
parachute out, as if you were about to do a z-fold. Take the
twist-tie, and tie it around the middle of the parachute. This
will restrict the parachute to approximately a third of its normal
surface area. If you need to use even less parachute area, move
the twist-tie down further.

9.3 Multiple Parachutes

Multiple parachutes are possibly a way to get more parachute
surface area, but they create many additional problems, and are
probably not worth the effort.

On multiple-parachute rockets, there is a good chance that
one or more of the parachutes will get tangled. Extra precautions
must be taken when folding parachute shrouds.

Another serious problem is that on a multiple-parachute rock-
ets, the parachutes usually inflate at different times. Often, only
one will inflate for the first five to ten seconds of flight, be-
cause it reduces the speed of the rocket, which prevents the other
parachutes from inflating.

9.4 Parachute Age

It is important to keep track of parachutes ages and the plas-
tic that they are made from. Mixing parachutes of different
ages (either as multiple parachutes or a main-drogue combi-
nation) can cause problems. As parachutes age, they become
stiffer and require a greater velocity to inflate. Often, only the
newer parachutes will deploy, causing the older parachutes to be-
come dead weight that only increases the chances of getting the
parachutes tangled.
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9.5 Shroud Tangling

Shrouds getting tangled can be a problem in rockets. For mul-
tiple-parachute rockets, it is best to keep the shrouds in different
parachute compartments. For single-parachute rockets, the best
solution is to attach a fishing swivel between the shrouds and the
rocket body. This will allow the parachute to roll and spin as it
inflates, without tangling the shroud lines.
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Chapter 10

Nosecones

There are two theories to nosecone design:
1. Make it as heavy as possible.
2. Make it as light as possible.

The reasoning behind the first theory is stability—by adding
weight to the nose of the rocket, you move the center of gravity
forward, increasing the rocket’s stability. This is the “quick—and-—
easy” way to build a rocket, but it has a major downfall—you
won’t get over a few seconds aloft, because the rocket is simply
too heavy.

Since you've already read this far into the handbook, you’re
obviously not looking for the “quick—and—easy” way to build any-
thing. Instead, we’ll look at making nosecones light and strong.

10.1 DMaterials

Selecting the right material is the key to building a light nosecone.
Pieces from plastic bottles tend to work well, as long as you do
not use the nozzle section or the base of the bottle—these are
the heaviest sections (See Appendix C for more information on
bottle weights).

If you decide to use part of a 2 liter bottle as a nosecone, be
sure to cut off the top 4 cm of the nozzle. To cover the hole, you
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can make a small cone out of the mid-section of a bottle. Simply
take a piece of plastic from a bottle, roll it into a conical shape,
and attach it with glue or packaging tape.

To make your nosecone even lighter, thoroughly sand it with
100 grit sandpaper. (Remember: Sanding on the pressurized
bottle is not allowed, but you can do whatever you want to
nosecones and other parts) You can typically reduce the weight
of the cone by 30% to 50% by sanding. After doing this, the
plastic will become very rough—use a lighter grain of sandpaper
(500 to 1500 grit) to make the plastic smooth.

10.2 Aerodynamics

The nosecone is the most important part of a rocket’s aerody-
namics. It is critical that the nosecone is rigid, because the rocket
will experience 80 to 100 MPH of wind as it is launched—paper
or other weak materials will not help to deflect the wind under
these speeds.

Shape of the nosecone is also important to reduce drag. The
best way to test nosecone shape is using a wind tunnel, but we
will not cover wind tunnels in the handbook. More information,
including plans to build your own wind tunnel, can be found on
the Internet.
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Mathematical
Calculations
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Chapter 11

Dome Parachute
Calculations

This chapter on dome parachute calculations is here as an in-
troduction to constructing 3-dimensional parachutes. The algo-
rithms in the next chapter, Elliptical Parachute Algorithms, can
calculate both elliptical and dome parachutes, but those are far
more complex and much harder to learn. The calculations in
this chapter are much simpler, and will work well enough for
most students.

In the Chapter 7, we looked at how to construct elliptical
and dome parachutes—they are made up of multiple panels in
the shape of spherical triangles. The purpose of this chapter is
to calculate the shape of these spherical triangles. In this chapter,
we will calculate an 8-panel, 100 cm diameter dome parachute.

First, we look at our parachute through its vertical cross-
section—a semi-circle. The first step in calculating our panel is
find its length. This is easy enough, since the panel occupies half
of our semi-circle. Thus, the panel length, P, is
wd
4
where d is the diameter of of the parachute. For our parachute,
this formula gives us a panel length of approximately 78.5 cm.

P =
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L4

Figure 11.1: Equally-spaced points on the vertical cross-section
of a parachute

Next, we must calculate some equally-spaced points along
one side of the semi-circle. The number of points you calculate
depend on how accurate you want your panel to be. Typically 10
to 20 points is sufficient. The purpose of these points is to serve
as reference points for the rest of our calculations.

To calculate these points, first divide 90° by one less than the
number of points you wish to calculate. We will use 10 points,
giving us a result of 10°. This means that our points are at
multiples of 10°: 0°, 10°, 20°, ...80° 90°. These angles are
measured from the origin of the semi-circle.

Since these points are equally-spaced along our horizontal
cross-section, they will also be equally-spaced along our final
panel. The distance between each point can be calculated by tak-
ing the panel length, P;, and dividing it by the number of points
minus one. For our parachute, the distance between points is
78.5/(10 — 1) ~ 8.7 cm. The y-values of our parachute are mul-
tiples of this number: 0.0, 8.7, 17.4, ...69.8, 78.5 cm'.

!Notice that 78.5 is not a multiple of 8.7. This is due to a rounding error—
you must actually use the full decimal value, 8.7222. .., when calculating your
y-values.
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Figure 11.2: Equally-spaced points along the horizontal cross-
section of a parachute

Next, we will look at the horizontal cross-section through each
of these points. The parachute, like the skin of an onion, forms
circular rings when it is sliced horizontally. Also, these rings
have an important property: they pass through each panel of the
parachute equally.
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As far as calculating these rings, we must go back to the
vertical cross-section to first find their diameter. The formula
uses basic trigonometry, so its dervitation will not be shown here:

dring = dcos )

d is the diameter of the parachute. # is one of the angles calcu-
lated above.

We must calculate the diameter for every one of the equally-
spaced points shown above. For our 100 c¢m parachute, you
should get the following values for the diameters: 100.0, 98.5,
94.0, ...17.4, 0.0 cm.

We can calculate the circumference of each of these circles
using the formula, cring = 7dring, then divide each of these val-
ues by the number of panels to get the length of the arc passing
through one panel. For our parachute, you should get the follow-
ing values: 39.2, 38.7, 36.9, ... 6.8, 0.0 cm.

We're almost done! These arcs, when mapped our 2-dimen-
sional panel, will become straight lines. Our panel is symmetrical
over the y-axis, so we can calculate our x-values by dividing the
arc lengths by two. Pairing these with the y-values calculated
earlier gives us our final panel coordinates: (£19.6, 0.0), (£19.3,
8.7), (£18.5, 17.4), ...(+3.4, 69.8), (0.0, 78.5).



Chapter 12

Elliptical Parachute
Algorithms

We showed how to calculate points for a dome parachute in the
previous chapter, but how can you calculate points for an el-
liptical parachute? The technique is very similar: we make a
parachute panel by first calculating the points on a vertical cross-
section of the parachute, which forms the top half of an ellipse
(hence the name “elliptical parachute”). Once we have the points
on a vertical cross-section, we take a horizontal cross-section of
the parachute at each of the points we calculated. Since a hor-
izontal cross-section is a circle, the radius is the distance from
the point to the y-axis on the vertical cross-section. And once
we have the circle, we can find the circumference, and divide the
circumference by the number of panels to find the width of the
panel at that point.

The trick is in calculating the equidistant points around the
ellipse. The equations for an ellipse are covered in any good math
book, but for this application, we must go a step further. There
is no exact, mathematical method for calculating equally-spaced
points on an ellipse, so we must develop an algorithm to estimate
the coordinates.
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12.1 Tangent Points Algorithm

The Tangent Points Algorithm is a recursive formula for calculat-
ing equidistant points on an ellipse by using derivatives to deter-
mine the slope of the tangent line through any point. It requires
a basic knowledge of calculus. See the next section for another
algorithm, although not as accurate, that does not require any
calculus.

Since these points are equidistant, we can refer to the distance
between them as a constant!, z. Once we calculate our z value
and have one point on the ellipse, we can estimate the point
adjacient to it by constructing the tangent through the point,
with a length of z. Mathematically, this cannot actually be a
point on the ellipse, since tangents only touch one point, but if
we calculate enough points, the points will fit the ellipse close
enough for our purposes.

(Xa+2z Yne2)

Figure 12.1: Estimating equidistant points using tangent lines

!The constant, z, is different for every parachute.
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Let’s start by looking at the

variables that are inputs:

Variable | Description Unit Range

d Diameter cm d>0

h Height cm h>0

P, Number of Panels P, >3

0 Overhang cm 0>0

P Number of Points p>3

s Seam Width cm s>0

f Precision Factor 20< £ <100
M; Material Thickness | cm M; >0

My Material Density g/cm® | My >0

Next, well calculate some other variables:

81

Var. | Description | Unit | Formula
r Radius cm r= %l
P, Panel cm P = (E) (3[r + h] —/(r+3h)(h+ 37"))
4
Length
F Precision F=10f
c Number of c=F-(p—1)+1
Calculated
Points
z Distance cm z= &
Between ¢
Points

Radius should be self-explanitory.

Panel Length is 1/4" the circumference of the ellipse?. The

formula is based upon Ramanujan’s formula for the circumference

of an ellipse.

Precision, and its cousin, Precision Factor, have been arbi-
trary values up until this point, but they become very important
when determining the number of points to calculate. As stated
earlier, we actually calculate many more points than we use, to
make the points fit the ellipse closer. The multiple which we use

2Be careful not to confuse the circumference of the ellipse with the cir-

cumference of the opening.
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is called Precision, and Precision Factor is simply a logarithmic
scale of Precision. These variables should be set as high as pos-
sible, considering the speed of your computer, to get an accurate
computation. The higher these numbers are, the more accurate
the panel will be, but it will take longer to calculate.

And finally, we calculate our z, which tells us how long we
need to make our tangents.

Before we go any further, we must explain a bit of the notation
that will be used in the next sections. The lowercase letters
z and y denote coordinates on the vertical cross-section of the
parachute, and the uppercase letters X and Y denote the x- and
y-coordinates on the pattern for the panel. Points that are being
calculated are denoted as (z,,y), and this point on the vertical
cross-section corresponds to the point (X, Y,,) on the panel. The
point adjacient to (z,yn) on the ellipse, which would be located
above this point on the panel, is denoted (41, Yn+1). Also, the
notation (x, f(zy,)) is identical to (x,, yn), because we can solve
the equation for an ellipse in terms of y to get a function, f(z,)
to find the y-value at the x-value of z,,.

Next, we will do some manipulation to our equation for an
ellipse, to get it in the forms that we need for our algorithm.
2 2

x
The basic equation for an ellipse is — + Z—Q =1, but in our
a

case, a is the radius of the parachute and b is the height, so we
2 2

will use the equation — + —= =1 instead.
r h?

/ 2
Solving for y yields: f(x) =y =hy/1 — ::—2 (Actually the left

side should have a =+ sign, but we do not include it, because we
are only concerned with the positive side of the ellipse)
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And next, we take the derivative using implicit differentiation:

22 2
il . = 1
r + h?
1 1
(172) z® + (ﬁ) v o= 1 (Note?)
1
% [(%) an (ﬁ) yz] = %[1} Implicit Differentiation
1 1 dy
()2 () (5) = o
dy
w()
o
dy _ ke
dez r2y
2
dy — B Substitute for y
dx ) 22
T h 1-— -
r
, dy hx
r) = — = —
F@) dx ) 22
Y-

We could simplyify the derivative further by rationalizing the
denominator, but the current formula is faster when calculated
on a computer, so we will leave it here.

Next, given any point (x,, f(x,)), we will calculate the point
(n+1, f(zn+1)), which is z cm away from (z,, f(x,)).

Here is the only flaw in algorithm, which is why it is only
an approximation of the ellipse: We assume that the ellipse is a
straight line passing through the two points, and thus, f'(z,) =
f(xn+1). This is obviously not true, because an ellipse does not
consist of straight lines, but since any two adjacient points are

1 1
3 (—2> and (ﬁ) are treated as constants for the parachute
r
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extremely close together, we can make this assumption without
causing too much error in the results. (We will actually calculate
this error later, just to make sure)

, T .
f(xn) = Ax Assumption
Az 4+ Ay = 22 Pythagorean Theorem
Ay = 22— Ax?
2 A2
f(zn) = @ Substitution
Az
Az fl(zn) = V22— Ax?
(Az- f'(zn))? = 2% —Az?
Az®(f(z)* +1) = 2
2
Az? = z
’ PP +1
Az = i
fr(@)? +1

Since x,41 = x, — Az, substitution yields:

z

Tn+l1 = Tn —

hx ‘1

2 (2n)?
r 1- 2

And now we have our recursive formula for finding an adja-
cient point on the ellipse!
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Now let’s put out recursive formula to use. But first, more
notation: p,, denotes the n' point on the vertical cross-section,
while P, denotes the n' point on the panel. Mathematically,
this could be written as p, = (2, yn) and P, = (X,,Y,,). Since
we are calculating more points than we are actually going to use,
we also need a way to denote the calculated points. These we
will call ¢,,.

Mapping calculated points (¢,’s) to vertical cross-section
points (p,’s) is fairly easy. The first calculated point maps to
the first vertical cross-section point (¢; = p1). Then, we ingore
the next few points, as determined by the precision. For instance,
if precision (F') was 10, then we are calculating 10 points for ev-
ery one that are used, thus points ¢y through cjg are dropped,
and the next point we use is c¢11, which would map to ps. The
mathematical formula for this is:

Pn = Cp(n—-1)+1

(Note the similarity to the formula for the number of calculated
points, ¢)

We know the first and last points on our ellipse, p; and p,
(which map to ¢; and c¢.):

p1=c1 = (r,0)
pp = Cc = (07 h)
Now that we have ¢; = (r,0), giving us 1 = r, we can

calculate all of the points in between ¢; and ¢, using our recursive
formula?.

40ur recursive formula only gives us x-values, but we could calculate the
y-values using our formula, f(z), which is the equation for an ellipse solved
in terms of y. As you will see later, we do not need to do this, because we
only use the x-values of the coordinates.
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Since we have calculated a value for the second-to-last point
(cc — 1), we might as well give our recurisive formula one more
run, and calculate ¢, again, even though we know its value. We
do this to establish how far off our estimates are, by calculating
a percent error value. If the percent error is high, this would
indicate that we should increase our precision factor and run the
program all over again. Heres the formula for percent error:

%error == |xcr_ T| - 100

We have calculated our points and pulled out only the ones we
will use, so next we must convert our vertical cross-section points
to actual points on the parachute panel. As stated before, we do
this by taking the horizontal cross-section through the point on
the parachute, which is a circle, which happens to have the same
radius as a x-value in p,. The formulas should be simple enough
to prove on your own, so here they are:

2Ty,

X,==
n Pn
P(n-1
y, = bn=1)
p—1

We now can calculate the coordinates for the curved part
of the panel for any elliptical parachute! Although that’s the
meat of the section, there are still some more calculations left,
to take full advantage of the parachute algorithm. The overhang
formulas look fairly complicated, but they can be derived using
basic geometry, so their proofs will not be included here.
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Variable | Description | Unit | Formula
Py Max. Panel | cm P, =2X,
Width
P2
_w +o0
O, Overhang cm O, = 407
Radius
P,
O, Overhang rad. | O, = 2arcsin(=—=-)
A 20,
ngle
O, Overhang (z,y) | Oy = (0,0, —0)
Vertex
. 2 p— J—
onerhang Overhang Cm2 = (Oa OT) (Pw [OT O])
2
Area
Aopening Opening Cm2 Aopening = 71'7'2
Area
Vinner Inner em® | Vipner = 2% - hr?
Volume
. P
Apanel Panel Area cm? Apanel = Z(Xn + Xn-1) <p _l 1)
n=2
Agurface Surface Cm2 Asurface = Apanel - P,
Area
p
S Seam cm = Z \/(acn —Zn-1)?>+ (Yn — Yn—1)2
Length n=2
Aseam Seam Area | cm? Aseam = Sis
Atotal TOtal Area Cm2 - (Apanel + onerhang + 2Aseam) . Pn
Violded Volume cm?® Violded = Atotal - M
Folded
m Mass g m = Violded - Ma
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12.2 Angle Repetition Algorithm

The Angle Repetition Algorithm is another algorithm for calcu-
lating equidistant points on an ellipse. It requires a significantly
greater amount of processing time, and it is not as accurate, but
it can be done without using calculus.

The algorithm works similar to the Tangent Points Algo-
rithm, but instead of using derivatives to calculate points, it uses
a ray, drawn from the center of the ellipse. First, the approxi-
mate point distance is calculated. Then, the slope of the ray is
gradually increased, until the point of intersection of the ray and
the ellipse is the correct distance from the previous point.



Chapter 13

Simulators

Simulators are the most useful tools for designing rockets. Al-
gorithms for stability and parachutes were discussed in previous
chapters, so this chapter will look at simulating the flight of the
rocket to predict factors such as flight time, height, and acceler-
ation.

Simulators give only an estimation of a flight. The actual
height, time aloft, and other characteristcs can vary tremen-
dously from the simulated values, sometimes by 50% or more.
Although outside factors make the actual flight unpredictable,
this is what makes simulators so important. Because there are
so many uncontrollable factors, simulators are often the only
method of comparing modifications to rockets. (For example:
Which rocket stays aloft longer, a 150 g rocket with an 80 c¢m
parachute, or a 200 g rocket with a 100 cm parachute?) To an-
swer this question without a simulator, you would have to build
two different rockets, two different parachutes, and measure the
time aloft on numerous launches of each to get accurate enough
averages to determine the answer. Not only does this take days
to do, but it is often impossible, because rockets often have a
short lifespan of only a few launches. As soon as one of the two
rockets fails, and crashes to the ground, you have to build a new
rocket and start testing all over again. Simulators make this task

89
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much easier—simply punch in a few numbers, and the simulator
will compare the two rockets.

13.1 Notation

Because of the number of different constants, variables, and func-
tions used in the bottle rocket simulator, notation becomes very
difficult. For the purpose of clarity, the following naming con-
ventions are used throughout this chapter:

a denotes acceleration A denotes Area

d denotes diameter D denotes Density

m denotes mass in kg M denotes Molar Mass (kg/mol)
t denotes time T denotes Temperature

v denotes velocity V' denotes Volume

In addition, standard units of measure are used for variables,
constants, and functions. This may look awkward when doing
computations (For instance, the diameter of the nozzle will be
measured in, yes, meters!), but it makes the rest of the formulas
far less complicated. The following units of measure are assumed
for all values:

Acceleration m/s?
Area m?
Density kg/m3
Force newtons
Length (Height, Diameter, etc.) meters
Mass kilograms
Molar Mass kg/mol
Pressure Pascals
Temperature Kelvin
Time seconds
Velocity m/s
Volume m3

Finally, we must make a distinction between the air on the inside
and outside of the bottle, because they have different pressures
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and densities, which is important in our calculations. The air
inside the bottle will be referred to as air, while the air on the
outside will be reffered to as atmosphere.

13.2 Constants, Variables, and Functions

It is important to understand how constants, variables, and func-
tions are used in this simulator.

A constant (such as 7) is a number that never changes. Con-
stants are used to determine the relationship between different
units and measurements, such as the ideal gas constant, Kgas,
which relates the pressure, volume, and temperature of a gas.

A variable (such as diameter) is a number that changes with
the rocket. The value of a variable can be different for each
rocket, but the value of the variable stays the same throughout
the entire flight of a rocket.

Functions (such as velocity) are used for values that are con-
stantly changing throughout the flight of a rocket. These values
are written as a function of time, ¢, (f(¢)). The variable ¢ repre-
sents the time, in seconds, since the rocket is launched (when the
locking mechanism is released, not when it comes off the launch
pad).

13.3 Acceleration, Velocity, and Height

Acceleration, velocity, and height are the three most important
functions in the simulator and are written as a(t), v(t), and h(t),
respectively. Determining the values of these three functions is
the purpose of a simulator. The graphs of these functions are
often plotted, to determine information such as maximum height,
maximum acceleration, impact velocity, time of apogee, and time
aloft.

These three functions are related by integration. Integrating
a(t) yields v(t), and integrating v(t) yields h(t). Thus, if we can
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calculate the value of one function, we can determine the values
of the other two.

We will determine the value of the acceleration function, a(t),
using Newton’s law,

Force = Mass x Acceleration

By rearranging to get the acceleration function by itself, we get:

Foum (¢
a(t) _ sum( )

m(t)
Fium(t) is the sum of the different forces that act upon the rocket.
We can calculate it by adding together all the different forces that
our simulator takes into consideration:

Fsum(t) = Fgrav(t) + Frod(t) + Fdrag(t) + Fprop(t) + Fpar(t)

m(t) is the function for the total mass of the rocket (including
water) at any given time. We will calculate this function in a
later section.

13.4 Computer Integration

The acceleration formula has not gotten extremely complex yet,
but over the next ten pages, it will. Obviously, we don’t want to
do all of this calculus by hand, so now is a good time to explain
how to integrate a formula like this one using a computer.

To integrate a complex function, like the acceleration func-
tion presented in this chapter, the best we can do is to find an
approximation of the integral—the formula is far too complex to
get an exact value. We can approximate this estimate using the
rectangle method®.

LA better approximation formula for integrals, such as the Trapezoidal
Rule or Simpson’s Rule, can be used for a more efficient simulator
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0 Integration Using
~ |
B |~
- the Rectangle
=) a(At
% I \
;d ‘l aaat) — — — Actual a(t)
| 5 At = 0.001 sec.
! 3 . At
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Figure 13.1: Integration Using the Rectangle Method

Instead of letting At equal zero and finding the limit, like we
would do if we were finding an exact value, we set it to a value
extremely close to zero, like 0.001. (Remember, At is a measure
of time, thus its unit of measure is seconds. 0.001 seconds equals
one millisecond.)

We start off with ¢t = 0, and compute our value of a(t). We
will next recalculate a(t) at t = At, so we will assume that the
value of a(t) stays the same from 0 to At. If we plot these values
on a graph, and draw a rectangle extending to the x-axis, we
have a rectangle of area:
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We increment our time, ¢, by At and repeat this process. The
sum of all of these rectangles should make a close approximation
of the integral of a(t):

(timpact /At)

timpact
/ a(t) dt ~ (alt- At) - At)
0 =0

Notice that we integrate from 0 to timpact- Where did timpact
come from? When we begin our simulation, we have no clue how
long the rocket’s flight time will last. timpact is not a real value—
it just tells us to start calculating values, and integrate until h(t)
hits the ground.

We can integrate v(t) the same way to get h(t):

timpact (timpact/At)
/0 v(t) dt = Z (v(t - At) - At)
t=0

You will also notice that some of the formulas in this section
require the value from a function that we cannot calculate, until
we calculate the first formula (e.g. v(t) and Fyrag(t)). This is
another benefit of integration on a computer—we can simply use
the last calculated value of the function (usually f(t— At)) as an
approximation of the actual value that we need.

13.5 Calculations

13.5.1 Launch Rod

Although the launch rod may seem to be of little importance, it
is actually critical to a simulator and to the flight of a rocket.
Even on launchers with only small rubber fitting as a launch
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rod (usually with a length of 2 cm or less), the rocket will reach
a speed of 10 MPH before it ever leaves the launch rod. On
launchers that use a pipe or other longer launch rod, this speed
is greater, and the launch rod is even more critical.

The following are input values related to the launch rod:

Variable | Description Unit
drod Diameter of Launch Rod? | m
lrod Length of Launch Rod m

Since we will need the area of the top of the launch rod for
further calculations, we will first find the radius of the launch
rod, 704, and then calculate the perpendicular surface area of
the launch rod, A;.q:

drod
Trod = 9
A = 7(Trod)?
rod T(Trod

We will also do the same for Rpoz0e and Apogzle:

_ dnozzle
Tnozzle = 9

— 2
Anozzle = W(Tnozzle)

As the rocket goes up as it is coming off the launch pad, the
amount of the launch rod inside the bottle decreases. Next, we
will calculate two functions, l,,qp(t) and Vieqn(t), to determine
the length and volume of the launch rod remaining inside the
bottle:

Loa(t) = loa — h(t)
‘/}odB(t) - lrodB (t) . Arod

2The diameter of the launch rod must be the same as the nozzle of the
bottle, therefore the value of dyoa may be referred to as dnozze When it is
used to calculate water flow out of the nozzle.
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13.5.2 Pressurized Bottle, Water, and Air

There are three things inside the pressurized bottle during the
initial launch: water, launch rod, and air. Now that we have
calculated the volume of launch rod, we must calculate the water
and air.

The following variables are inputs for our simulator:

Variable | Description Unit
%4 Bottle Volume m®
d Bottle Diameter m
Viater(0) | Initial Water Volume m®
P.i: (0) Initial Air Pressure Pa
Cq Drag Coefficient of Rocket | Cy

Viater(0) is the initial value of the function Viager(t). We will
show how to calculate Viyater(t) for values of ¢ other than zero in
the section, Propulsive Forces.

We now have the volume of water and launch rod inside the
bottle, therefore the rest must be air. Let Vg (t) represent the
volume of air inside the bottle (in m?3):

Vair(t) =V - Vwater(t) - ‘/rodB(t)

Boyle’s Law states that the pressure and volume of a gas vary
inversely. Thus, as the volume of air inside the bottle increases,
due to the water and launch rod leaving, the pressure of the air
decreases proportionally. Using Boyle’s Law, P1V) = P2Vs, we
get the formula for the air pressure inside the bottle, P, (t):

Pair(o) : Vair(o)

Fanlt) = =377
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13.5.3 Preliminary Propulsive Calculations

The next step involves calculating the height of the water inside
the bottle and the surface area of the top of the water. We need
these values to calculate the propulsion of water out of the bottle.

This is one place we will make a large simplification. We could
actually measure the diameter of the bottle at many different
heights to input the bottle’s shape into the simulator, but instead,
we will simply assume that the bottle is a perfect cylinder, with a
hole the size of the nozzle in the bottom. For 2-liter bottles, this
simplification should not make much of a difference. For bottles
with a longer neck, this may make more of a difference. Also, by
working it out the long way, and measuring actual diameters, we
could make a simulator that compares the propulsion of different
shapes of bottles. This will not be covered here.

For our cylindrical bottle, the perpendicular area of the bot-
tle, Aperp, can be found using the formula:

2
Aperp = 7T

We also have a function, Agu(t), which is the surface area of
the top of the volume of water indicated by Viater(t). For our
cylindrical bottle, this value will always be the same as the per-
pendicular area of our bottle:

Asurf(t) = Aperp

Finally, we must find the height of the water level, hAyater(t).
For our cylindrical bottle, this is easy:

hb tle = Vwater(t)
o Asurf(t>
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13.5.4 Mass

Mass is another important factor in rocket design. A simulator
must also consider the changing mass of the rocket, due to the
propulsion of the water.

Our simulator will have three more input variables:

Variable | Description Standard Value | Unit
Mempty Empty Mass kg
Duwater Density of Water 1000 kg/m3
Qgrav Acceleration of Gravity -9.806 m/s2

Dyater is typically 1000 kg/m?3, but by using a variable, we
can test the effect of different substances as propellants. agray is
similar—here on Earth, the value does not change, but just in
case you wanted to see what a rocket would do under the moon’s
gravity. ..

To calculate the changing mass, we first find the mass of
water, Myater (t):

Mwater (t) = Vivater (t) - Dyater

We simply add the empty mass of the rocket to mass of the water
to get the total mass, m(t):

m(t) = m + Myater(t)

13.5.5 Air and Atmosphere

The next thing our simulator will need is the density of air and
atmosphere. (Remember the difference: air is inside the rocket;
atmosphere is outside.)
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Calculating the density of air and atmosphere will require five
more inputs:

Variable | Description Standard Value | Unit
Vupdraft Updraft Velocity 0 m/s
Patm Atmospheric Pressure 101325 Pa
Tatm Atmospheric Temperature K

Tair Air Temperature K
Matm Molar Mass of Atmosphere 0.029 kg/mol
Mair Molar Mass of Air 0.029 kg/mol

Updraft velocity is a constant, that in later calculations, will
be added to the rocket’s velocity to determine the relative wind.
A positive value will simulate an updraft resulting from a thermal
or a hill. Typical updrafts range from 0 to 0.5 m/s.

Notice that the air temperature and atmosphere temperature
are input as separate values. Shouldn’t they be the same since
the air we pump inside comes directly from the air outside? Not
exactly. On most launchers, the air comes out of the launch rod
and bubbles up through the water. When this occurs, there is
a heat exchange between the air and the water. The change in
temperature is small, so it has little effect on the overall launch,
but this gives you the option of experimenting with heated or
chilled air inside the rocket.

Another important thing to notice is that the molar mass
of air is input input separately from atmosphere. The typical
value for the air we breath is 0.029 kg/mol, but many bottle
rocket launchers are equipped with air tanks, and often, nitrogen,
oxygen, or another gas is used instead of ordinary air. The type
of gas used to pressurize the rocket does make a difference, so
here are some values of common gases:

Gas Molar Mass

Helium (He) 0.004 kg/mol
Nitrogen (N2) 0.028 kg/mol
Air 0.029 kg/mol
Oxygen (O2) 0.032 kg/mol
Carbon Dioxide (CO2) | 0.044 kg/mol
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We will make another assumption: air, or whatever other gas
we are using, is an ideal gas. This allows us to use the Ideal Gas
Law,

PV =nRT

where P represents pressure, V represents volume, n represents
the number of moles of gas, R is a gas constant, and 7T is the
temperature in Kelvin. Since:

Mass
Number of Moles = ————
Hbet ot AL0Tes Molar Mass
m
n = —
M
we can rewrite the equation as
mRT
PV = —
M
MPV = mRT
PM  m
RT V
Since:
Mass — _ Densit
Volume Y
m
= - D
%
we can substitute m/V for D, yielding:
P-M
D=——
R-T

With this variation of the Ideal Gas Law, we get the following
two equations for the denstity of air, D,i, and the density of
atmosphere, D,im:

D.: _ Pair i Mair
air —
Kgas : Tair
D _ Patm i Matm
atm — K
gas * Tatm

(Kgas ~ 8.31441 Pa - m?/mol - K)



13.5. CALCULATIONS 101

13.5.6 Parachute

The final set of calculations involves parachutes. The following
values are needed as inputs:

Variable | Description Unit
Npar Number of Parachutes

Apar Surface Area of Each Parachute m?

Cpa Parachute Drag Coefficient Ca

Tdeploy Length of Time to Fully Deploy | sec.
Kpar Parachute Deploy Constant

All of the values should be self-explanatory, except for one:
the parachute deploy constant, Kp.,. This is a value used to
deploy the parachute exponentially. Without an exponential de-
ploy, the parachute instantly being fully deployed would cause
a huge jump in the acceleration graph, causing G-forces that
would rip the rocket apart. A value of 10 is normally used for
Kpar. This value has no logical meaning and little scientific ba-
sis, but it seems to work well. Lower values create a smoother
deploy, while higher values will create a rougher one.

To calculate our parachute’s deploy, we need to keep track
of our apogee time, which we will record as tapogee. S0 how do
we know when the rocket is at apogee? The First Derivative
Test! Whenever our v(t) value goes from positive to negative,
our rocket has passed apogee. At this time, we store the current
value of the elapsed time, ¢, as tapogee-

After apogee, we can start calculating the percent deployed
of our parachute, %depioyed (t):

bt Kpar
%deployed(t) = ( apogee) x 100
tdeploy

Like Kpar, our formula for %qeployed () just generates an arbitrary
y = x¥ graph that seems to make a smooth parachute deploy.

From %deployed(t), we calculate the total area of parachute
that has been deployed, Aparp(%):

AparD (t) = Npar * Apar : %deployed (t)
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13.6 Forces

13.6.1 Gravity

With all of our overhead calculations completed, we can begin
calculating the actual forces that act on the rocket. First, we
will look at gravity.

Remember the F' = ma equation from the beginning of the
chapter? We will use this same equation to calculate the force of
gravity:

Fgrav (t) = ’I’I’L(t) * Qgrav

13.6.2 Launch Rod Reaction Force

The launch rod reaction force is the force that gives the rocket
its initial “push” off the launch pad. It is actually two forces in
one: the force of the air inside the bottle pushing on the launch
rod minus the force of the atmosphere which is working against
the launch rod reaction force.

We can calculate these forces by taking the pressure inside
the bottle and multiplying it times the area of the surface which
it pushes against:

Fair(t) = Pair(t) : Arod
Fatm(t) - Patm : Arod

Subtracting these forces yields:

Frod(t) = Fair(t) - Fatm(t)
Frod(t) - (Pair (t) . Arod) - (Patm : Arod)
Frod(t) = Arod(Pair (t) - Patm)
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13.6.3 Wind Resistance

Since there is no exact formula to calculate the wind resistance
of an object moving through the air, scientists approximate this
force using a drag coefficient, or Cyj. The only accurate way
to determine a drag coefficient is by experimentation in a wind
tunnel, but drag coefficients for bottle rockets are typically in the
0.2 to 0.5 range. Here is the formula for the wind resistance of
the rocket:

]2

:th : Datm : Aperp ' [U(t) + Uupdraft

Fdrag (t) = 9

Wind resistance is typically a downward force, but you must
look at the velocity of the relative wind, v(t) + vupdrafs, to deter-
mine whether the force is truly positive or negative.

13.6.4 Propulsive Forces

The propulsive force of the rocket is caused by the water that
pushed through the nozzle by the pressurized air. Remember the
law, “For every action, there is an equal and opposite reaction?”
In this case, the action is pushing water out of the nozzle, and
the reaction is the propulsive force that makes the rocket go up.

First, we must realize that the water at the water’s surface
is moving at a different velocity that the water at the nozzle.
Second, we must show that at and point in the water, there is
an inverse relationship between the velocity of the water and the
area of the bottle’s horizontal cross-section.

Let’s assume that at a given point in time, the velocity of
surface of the water is vgy(t) meters per second. Therefore, in a
period of time, At, the water level will drop hg,f meters, where

hswt = vsurf(t) - At
(Distance = Rate x Time)

Thus, the volume of water that left the rocket, Vs, is:

‘/surf = hsurf ' Asurf(t)
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Figure 13.2: Proving there is an inverse relationship between the
velocity and area of the moving water

Since this water had to go somewhere, it must have gone out of
the nozzle, therefore there is now a volume of water, Vy,o,,1e, that
has come out of the nozzle. Assuming this water did not spray
out, but stayed packed into a cylinder with the same diameter as
the nozzle, this cylinder would have a height, hyozz1e, Of:

Vnozzle

hnozzle =
Anozzle

Since hpozle meters of water have come out in At seconds,
working backwards from Distance = Rate x Time gives us:
hnozzle

At

Since we must have the same amount of water at the beginning
of the period At as we have at the end,

Unozzle (t) =

Vvsurf = Vnozzle
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Substitution yields:

hsurf : Asurf(t) = hnozzle : Anozzle
VUsurf (t) - At - Asurf(t) = Unozzle (t) - At - Anozzle

Cancelling out At from each side yields:

Usurf (t) : Asurf(t) = Unozzle (t) : Anozzle

Therefore, we have an inverse relationship between the velocity
and area of the moving water.

Unozzle(t) 18 the function which we are looking for. We will
solve the equation in terms of vy f(t) so we can substitute later
and get rid of the vgyf(f) term:

Unozzle (t) : Anozzle

Usurf(t) = A f(t)

Now, we are ready to calculate the velocity of the water leav-
ing the rocket. We calculate this using Bernoulli’s Law, which
says that at any point along the flow of water,

1
p-Fd-g-h-f—§-d-v2

equals a constant. p represents pressure, d represents water den-
sity, h represents height, and v represents the velocity of water.
The first term accounts for the air pressure pushing against the
water; the second accounts for the increased water pressure at
the bottom due to gravity; and the third term accounts for the

velocity of the moving water.
Using Bernoulli’s Law for the surface of the water gives us:

1
[Pair (t) - Patm] + Dyater * [agrav - U,(t)] - hwater (t) + 5 *Dyater - [Usurf (t)}2 = const

First, notice the first term subtracts the atmospheric pressure
from the air pressure. This is because the force of the atmospheric
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pressure cancels out part of the force of the air pressure. For
instance, if the air inside was at a pressure of 15 PSI and the air
outside was also at 15 PSI, no propulsion would result.

Second, notice that the g, which represented the acceleration
of gravity, has been replaced by [agrav —a(t)]. This is because the
rocket is accelerating, so we must account for the added acceler-
ation, a(t). a(t) is subtracted to make this value negative, be-
cause of the “equal and opposite reaction” law—since the rocket
accelerates upward, this creates a force which pushes the water
downward.

Using Bernoulli’s Law for the water in the nozzle gives us:

1

5 - Dyater [Unozzle (t)]2 = const

Notice that the first term disappears because there is no pres-
sure acting on the nozzle (We took care of the atmospheric pres-
sure when we subtracted it in the previous equation.). The sec-
ond term disappears, because height is relative to the bottom,
therefore the height for this equation is zero.

Since the constants must be equal, we can set these two equations
equal to each other:

[Pair (t) - Patm] + Dyater - [agrav - a(t)] : hwater(t) +
1 1

+ 5 - Dyater - [Usurf(t)]2 = 5 - Dyater - [Unozzle(t)]2

Rearranging yields:

1 1

5 * Dyater [Unozzle(t)]2 - 5 - Dyater - [Usurf(t)]2 =
= Par (t) — Patm + Dyater - [agrav - a(t)] - hwater (t)
Dwater 2 2\ _
( 9 ([Unozzle(t)] - [Usurf(t)] ) -

= Pair (t) — Patm + Dyater [agrav - a(t)} - Rwater (t)
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Substituting for vg,+ gives us:
Dwa er Anozz e t 2. nozzle t 2
( : ) ([Unozzle(tﬂ2 - [ 1 ( )] [V 1 ( )] > =

2 [Asurt (8)]?
= P (t) — Patm + Dwater - [agrav - a(t)} : hwater (t)

Factoring out [vneze(t)]%:

D Anolc )’
2 water . nozzle —
[Unozzle(t)] ( 2 > (1 ( Asurf > )

= Pair (t) — Patm + Dywater [agrav - a(t)] - Dwater (t)

Solving for vpeg1e(t):

2 [Pair(t) — Piatm + Dwater - [agrav - a(t)] : hwater(t)]

Anozzle 2
Dwa er * 1-
: < < Asurf > )

Unozzle (t) =

Unfortunately, we’re not done yet. We have only calculated
the velocity of the water being expelled through the nozzle. We
have not yet calculated the volume during the time period At,
or the resulting force from expelling the water.

Calculating volume is easy. (Anything is easy after calculat-
ing the velocity!) We simply assume the water fits into a cylinder
the size of the nozzle. Using Distance = Rate x Time, we get that
the height of water, hexpelied (t), expelled during At is:

Hexpelled (t) = Unozzle (t) - At

Once we have the height of the cylinder, we calculate volume by
multiplying the height by the surface area of the base:

‘/expelled (t) - hexpelled (t) . Anozzle
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Next, we convert volume of water into mass:

Mexpelled (t) = ‘/expelled (t) . Dwater

Finally, we calculate the resulting propulsive force (Fprop(t)) cre-
ated by expelling mexpelied(t) kilograms of water at a rate of
Unozzle(t) meters per second:

Fprop (t) = Mexpelled (t) * Unozzle (t) - At

13.6.5 Air Pulse

In addition to propulsion resulting from the expulsion of water,
there is also another type of propulsion that the simulator does
not consider: the release of the remaining air pressure after the
water is gone. The “air pulse,” as it is called, adds a small amount
of thrust to any rocket launch—a rocket with no water will even
go 10 to 15 feet in the air. An instantaneous acceleration could
be added to the thrust for the time period, At, that this air
pulse occurs. Another possibility to explore is the derivation of
an actual formula to calculate the thrust resulting from the air
pulse. Although we will not go into it here, more information on
the air pulse is available on the Internet.

13.6.6 Parachute Drag

Parachute drag is calculated in the same manner as rocket drag,
except it is typically in the opposite direction:

de . Datm : AparD (t) . ['U(t) + vupdraft]2
2

Foar(t) =+

Like rocket drag, you must look at v(t) +vupdrafs to determine
whether this is a positive or negative force.
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13.7 Conclusion

Simulators are a great tool for developing rockets, because they
allow you to test modifications in seconds, without spending the
days required to do actual testing. The simulator covers some of
the most important forces, but it does not cover every one. There
are still many more factors that could be taken into consideration
by a simulator, such as wind, air pulse, fin drag, stability, and
bottle shape.
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Appendix A

Water Markings

Since simulators can tell us the optimized water level for a partic-
ular rocket, we need a way to accurately measure the water in the
bottle. The diagram below shows the standard water markings
used on the pressurized bottle:

Figure A.1: Standard Water Markings

Notice that the markings have diagonal symmetry—when the
bottle is turned upside down, the markings stay the same. This is
important, because sometimes water is measured when the bottle
is right-side-up (while putting the rocket on the launcher); other
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times it is measured upside-down (while filling with water). This
allows you to use the same water markings, no matter what type
of launch set-up is used.

Since the markings are symmetrical, only one set is used at a
time. The side on the right (which is always at the bottom) is the
side that you will use. The lowest line represents the 30% water
level for the bottle. Above it is the 40% water level. The top line
(the longest one) is the 50% water level. All water levels are
measured from the true volume of the bottle, not what
the bottle is marked as on the shelf!

The following chart lists water markings for typical bottles.
All measurements are in centimeters, and are measured from the
bottom ring of the mid-section of the bottle.

Bottle Type Volume | 30% | 40% | 50% | 60% | 70%

1-Liter Poland Springs | 1.10 L 2.5 4.0 5.5 7.0 8.5
2-Liter Coca-Cola 2.19L 3.0 5.0 7.0 9.0 11.0




Appendix B

Stability Markings

Just as we can mark water levels on our rocket, we can also mark
the stability. Stability markings are helpful on a rocket, because
they allow you to change parachutes or other mass inside, with-
out having to do the math or using a computer simulator to
recalculate the stability. Here’s a typical marking system:

Figure B.1: Typical Stability Markings
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The bottom line indicates the center of pressure of the rocket.
The lines above it mark the center of gravity locations for 0.5,
1.0, and 1.5 calibers of stability. Remember, the distance between
the center of pressure and center of gravity of a rocket with 1.0
caliber of stability is equal to the diameter of the rocket body.

With stability markings, testing your rocket for stability is
simple. Pack your parachutes and any other parts of the rocket
as if they were ready to fly. Then, try to balance the rocket body
on the side of your finger. The point at which the rocket balances
is the center of gravity. Use the stability markings to determine
your rocket’s stability.



Appendix C

Rocket Material Weights

In chapter 5, we looked at how to calculate a rocket’s stability
by using the plans, without actually building the rocket. To do
this, you must first know the weight of the materials you are
going to use, so you can accurately estimate the rocket’s center
of gravity. The values on the following pages contain weights of
some common materials.

C.1 Bottles

The following table lists the mass of some 1 and 2 liter bottles.
These values should be used for estimating the mass of the pres-
surized bottle of the rocket:

Volume | Brand Mass
1L Poland Springs | 37.8 g
2L Coca-Cola 48.6 g
2L Publix 50.2 g
2 L Sam’s Choice 51.1g

For other parts of the rocket, which are made from pieces of
plastic bottles, but not necessarily the whole value, we must look
at the weight of each particular section of the bottle. For strength
reasons, the plastic of the bottle varies in thickness. Typically,
the neck and the base have the thickest plastic, while the flat,
middle section is made of thinner plastic.
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4cm | 10.5¢g

6cm | 7.6g

14cm | 17.1 g

\ 6cm 13.4¢g

Figure C.1: Weight breakdown of 2 liter Coca-Cola bottle. (Total
weight: 48.6 g)

If you are using the flat, mid-section from a bottle as part
of your rocket, you can estimate the weight of it by using the
following values:

Volume | Brand Mass by Surface Area | Mass of Ring
1L Poland Springs 460 g/m? 1.2 g/cm
2L Coca-Cola 350 g/m? 1.2 g/cm

You can either use the values in the third or fourth columns,
depending on how you measure your piece. If you know the
surface area of your piece, convert the value to square meters,
and multiply by the value in the third column. If you are cutting
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a ring from the mid-section of a bottle, simply take the height,
in em, and multiply by the value in the fourth column.

C.2 Balsa Wood

Balsa wood varies in weight, so to get an accurate value, you
must weigh the wood before you use it. The following chart lists
common ranges of the weight of balsa wood:

Thickness Mass
1/32” 50 — 150 g/m?
1/16” 150 — 300 g/m?
3/32” 300 — 600 g/m?

C.3 Tape

Always use a light tape such as packaging tape when attaching
rocket parts. Other tapes may be stronger, but are not necessary,
and add excess weight to the rocket.

Tape Mass by Surface Area | Mass by Length (27 Width)
Packaging Tape 60 g/m? 3 g/m
Duct Tape 200 g/m? 10 g/m
Aluminum Tape 300 g/m? 15 g/m

C.4 String

Some type of string is needed for parachute shroud lines. Look
for shroud lines that are light, but also very strong, as you can
see in the chart below. Dacron weighs only slightly more than
regular cotton string, but it is much stronger.

String Strength Mass
Cotton 5 lbs. 0.16 g/m
Dacron | 301bs. | 0.18 g/m
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C.5 Other Materials

Here are some typical values for other materials that you may
use while building your rocket:

Material Mass
Cardboard 500 — 800 g/m?
Dry Cleaning Bags 15 — 25 g/m?




Appendix D

Parachute Materials
Chart

This chart lists approximate thickness and density values for
common parachute materials. The formulas for calculating a
parachute’s size and mass using these values were shown in the
chapter FElliptical Parachute Algorithms.

Material Thickness (cm) | Density (g/cm®)
Plastic (Small Dry Cleaning Bag) 0.0021 0.730
Plastic (Large Dry Cleaning Bag) 0.0031 0.730
Tyvek (Priority Mail Envelope) 0.0188 0.342
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Appendix E

Further Reading

The following Internet sites are filled with great information on
water rocketry:

Baals Wind Tunnel
http://ldaps.ivv.nasa.gov/Curriculum/tunnel.html
A simple wind tunnel that can be built for under $200.

Clifford Heath’s Water Rockets Page
http://www.osa.com.au/"cjh/rockets/

A simple water rocket simulator, plus lots of great water rocket
links.

Dave Johnson’s Water Rocket Annex
http://www.geocities.com/CapeCanaveral /Lab /5403 /
Originator of the Airspeed Flap.

Paul Grosse’s Water Rocket Index
http://ourworld.compuserve.com/homepages/pagrosse/
h2oRocketIndex.htm

A large site containing various information on water rockets.
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VCP CP/CG Stability Calculator
http://www.impulseaero.com/Software/VCP /index.html

The best program for calculating stability using the Barrowman
Equations.

Water Rocket Equations by Den TAP
http://www.fortunecity.com/tattooine/cluster /145 /rocket /
theory/contents.htm

A great site, containing many of the equations mentioned in the
Simulators chapter.



