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Abstract

Dynamic voltage and frequency scaling is increasingly
being used to reduce the energy requirements of embed-
ded and real-time applications by exploiting idle CPU re-
sources, while still maintaining all application’s real-time
characteristics. Accurate predictions of task run-times are
key to computing the frequencies and voltages that en-
sure that all tasks’ real-time constraints are met. Past work
has used feedback-based approaches, where applications’
past CPU utilizations are used to predict future CPU re-
quirements. Mis-predictions in these approaches can lead
to missed deadlines, suboptimal energy savings, or large
overheads due to frequent changes to the chosen frequency
or voltage. One shortcoming of previous approaches is that
they ignore other ‘indicators’ of future CPU requirements,
such as the frequency of I/O operations, memory accesses,
or interrupts. This paper addresses the energy consump-
tions of memory-bound real-time applications via a feed-
back loop approach, based on measured task run-times and
cache miss rates. Using cache miss rates as indicator for
memory access rates introduces a more reliable predictor
of future task run-times. Even in modern processor architec-
tures, memory latencies can only be hidden partially, there-
fore, cache misses can be used to improve the run-time pre-
dictions by considering potential memory latencies. The re-
sults shown in this paper indicate improvements in both the
number of deadlines met and the amount of energy saved.

1. Introduction

Background. As mobile processors become more power-
ful, their increased energy demands can lead to shorter bat-
tery lives and greater heat dissipation. In order to reduce
these demands while preserving high performance, energy-
awareness has become a critical factor in the design of mo-

bile and embedded systems. One outcome is the develop-
ment of new methods for dynamic power management, such
as the support of dynamic voltage and frequency scaling
(DVFS) [8, 21, 13, 7] in microprocessors like Intel’s XS-
cale and StrongARM and Transmeta’s Crusoe chips. DVFS
takes advantage of the quadratic relationship between sup-
ply voltage and energy consumption [2], which can result in
significant energy savings. However, DVFS techniques pose
a difficult challenge to real-time systems: not only must
DVFS be used to reduce energy consumption, but it must
do so without impacting the desired quality of service of-
fered by the system to applications and end users, e.g., pre-
vious work has introduced energy-aware CPU schedulers
aiming at meeting all task deadlines while exploiting DVFS
to reduce the processor’s energy consumption. Recent ap-
proaches to solving this issue bases the frequency/voltage
computations used by the scheduler on its predictions of fu-
ture task run-times [26, 14]. However, these approaches ig-
nore that applications’ run-times also depend on I/O, mem-
ory accesses, or interrupts. Inaccuracies in run-time pre-
dictions can therefore lead to missed deadlines, subopti-
mal energy savings, or large overheads due to frequent re-
computations and adjustments of the frequency and voltage.

This paper addresses inaccuracies in predicting task run-
times, by removing one of their major causes, the utiliza-
tion of memory resources. Memory-bound applications, in-
cluding image and video processing and scientific appli-
cations, require frequent accesses to memory, which con-
tributes substantially to their total run-times, particularly in
systems where DVFS not only changes the CPU’s clock fre-
quency, but also the frequency of the bus linking CPU and
memory (e.g., in XScale-based systems). The memory over-
heads experienced by these tasks also depend on their I/O
activities, which can increase bus or memory loads, thereby
also increasing memory access times. The key approach ex-
plored in this paper, therefore, is to capture the memory
overheads experienced by memory-bound tasks and then
use these overheads to better predict task run-times. The



method used is to dynamically monitor a task’s cache miss
rate, which determines the memory access rate experienced
by this task. Dynamically monitored cache miss rates are
used as feedback input by the DVFS algorithm, which then
computes the frequencies and voltages to be used for task
execution.

In order to utilize DVFS, the CPU scheduler must co-
operate closely with the DVFS algorithm. The two main
questions that need to be answered by each DVFS ap-
proach are: (a)when to change the frequency and voltage
and (b)how to change it. In our approach, each task re-
ceives a time sliceC in every period ofT time units,
and tasks are scheduled according to the Earliest Dead-
line First (EDF) algorithm. Utilizing all tasks’ scheduling
attributes, the DVFS algorithm can compute the to-
tal CPU utilization, and consequently, the frequency
and voltage combination that maximizes this utiliza-
tion (i.e., 100%). However, inaccuracies in predicting
tasks’ run-times can cause system utilization to ex-
ceed 100%, thereby leading to missed deadlines and
frequent frequency and voltage re-computations. Overesti-
mating the utilization can result in inefficient energy man-
agement. One of the reasons for these inaccuracies are
the frequent memory accesses of memory-bound applica-
tions. Even modern processors are able to hide these mem-
ory access latencies only partially. We therefore address this
issue by monitoring the cache miss rates of all tasks to ob-
tain an estimate of the memory latencies and to improve
the frequency and voltage computations of our DVFS ap-
proach. In the evaluation section of this paper we evaluate
several applications at different CPU utilizations, show-
ing improvements in energy savings in about 27% of
all cases. Our future work will extend this feedback ap-
proach to I/O-bound applications (memory and disk ac-
cesses), thereby addressing the needs of energy-aware
communication-intensive applications (e.g., real-time sen-
sor networks).

Contributions and Related Work. There has been sub-
stantial prior work on energy management for mobile mul-
timedia systems, including low-power modes for disks and
networks [5, 3], energy-aware scheduling policies [19, 10,
7, 15], and energy management techniques for wireless
communication [1, 11, 16, 18, 17].

The main contribution of this work is the implementa-
tion and evaluation of a feedback-based DVFS approach for
real-time systems that adjusts predictions of future system
utilizations based on monitored memory accesses. The re-
sulting approach to DVFS can lead to higher energy sav-
ings, reduced deadline misses, or a reduced number of re-
computations of frequencies and voltages. Our experimen-
tal results utilize the voltage and frequency scaling capabil-
ities of an XScale-based evaluation board. In comparison,

previous work on DVFS algorithms for real-time sched-
ulers described in [13] and [19] relies on worst-case task
execution times, whereas we use cache feedback data to
approximate actual execution times. There has been sub-
stantial prior work that examines the effects of DVFS on
cache performance. In [9], the authors evaluate energy sav-
ings due to the reduced cache miss penalties at lower clock
frequencies. Simulation results with a SimpleScalar simu-
lator show that a substantial reduction in energy consump-
tion can be achieved with minimal performance degrada-
tion. Compile-time techniques have exploited these stall pe-
riods, e.g., in [6], the authors implement a compiler-directed
dynamic voltage scaling algorithm that achieves energy sav-
ings of up to 55%, with only a 6% performance penalty.
In [22], the authors investigate the use of feedback loops to
refine approaches such as PAST [24] by considering the rate
of change in a system’s processing requirements. In [25],
the authors also distinguish between processing and mem-
ory access, however, their work is limited to frequency scal-
ing, where each task operates at its own speed. With volt-
age scaling, approaches that compute frequency and volt-
age pairs over the entire task set are preferable due to
the reduced changes in speed settings and thereby reduced
overheads. The FAST approach [20] focuses on static tim-
ing analysis for simple in-order single issue pipeline. Al-
though the authors argue that static timing analysis is prefer-
able over dynamic approaches (because they do not pro-
vide any worst-case execution time guarantees), our results
for our feedback-based approach on an out-of-order com-
pletion processor show that ’real’ applications (e.g., gzip)
have cache miss rates that do change, but by no means in a
random way. Finally, in [4], the authors utilize cache miss
feedback based on performance counters as shown in our
work, however, focusing on best-effort tasks. For example,
to limit the overheads of frequent voltage changes, they use
a time quantum of 60ms, which prohibits rapid changes of-
ten needed in real-time systems. Our approach therefore can
change voltages at any time, however, it uses a Schmitt-
trigger-style function to limit the number of voltage changes
and the overheads associated with these changes.

2. Dynamic Voltage and Frequency Scaling

Real-Time CPU Scheduling.The traditional UNIX sched-
uler has been shown to have unacceptable performance for
multimedia applications [12]. In our approach, to efficiently
support real-time applications, each taski has a periodTi

associated, where the end of the current period is the dead-
line. Each taski is guaranteedCi time units each periodTi,
and the scheduler uses Earliest Deadline First (EDF) among
all currently ‘eligible’ tasks (i.e., tasks that have not yet ex-
ecuted for their time slices in their respective periods). If
a task misses its deadline, the scheduler violated the real-



time guarantees to this task. Further, each task can run for
at most its assigned service time in its period, unless it is
marked aswork-conserving, in which case it is possible to
schedule this process several times within its period as long
as CPU utilization allows.

Clock frequencies are typically computed such that the
rest utilization of the CPU is exploited by slowing down
task execution. We compute a new clock frequency when-
ever the system utilization changes, e.g., when tasks join or
leave the run queue. The current utilization of all tasks is
computed with:

U =
∑ Ci

Ti

(1)

Ci is the service time allocated to taski at the default clock
frequency and this service time increases when the clock is
slowed down. For each clock frequencyn, a scaling fac-
tor kn can be obtained by executing a sample processing-
intensive code at both the default frequencyfmax andfn

and dividing the measured run-times:kn = Cn/Cmax. This
is repeated for each available clock frequency (or core volt-
age) for a given processor. The goal of frequency scaling is
to get as close to 100% utilization as possible, i.e.,

U100% =
∑ Ci ∗ k′

Ti

(2)

wherek′ is the yet unknown scaling factor. To guarantee
that best-effort tasks are not starved, we can replaceU100%

with Ux%, e.g.,U95%. Thenk′ can be determined with:

k′ =
U95%∑

Ci

Ti

(3)

The resulting k′ is compared to the previously ob-
tained scaling factors, and the scaling factorkn closest to
k′ (kn ≤ k′) is selected, and the clock frequency is ad-
justed to frequencyn.
Note that other approaches exist that compute differ-
ent scaling factors for each individual application, however,
these approaches have higher computational overheads
due to more frequent voltage and frequency changes. Nev-
ertheless, the solution introduced in this paper could
also be applied to these approaches. However, this com-
mon approach to DVFS assumes that the run-times can be
predicted by monitoring previous CPU requirements, ig-
noring that other factors (e.g., I/O utilization) can affect
the run-times, making the predictions inaccurate. This is-
sue is addressed by the remainder of this paper.

Deficiencies and Conclusion.Intuitively, the scaling fac-
tor k′ would be the ratio of the clock frequencies. How-
ever, various factors, including cache misses penalties, con-
text switching, and I/O requests, cause a change ink′.

Figure 1 shows the performance of three applications,
relative to the maximum frequency (i.e., the inverse of the
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Figure 1. Relative performance of three appli-
cations at various clock frequencies on the
Intel XScale PXA255.
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Figure 2. Data memory access rate of gzip.

execution times relative to the execution time at the max-
imum frequency). On the x-axis, we display the differ-
ent frequencies supported by an XScale-based device: the
first number depicts the core clock frequency (ranging from
99MHz to 398MHz); the second number is the bus fre-
quency (ranging from 50MHz to 196MHz). This results
in 5 different frequency settings. Note however, that the
fourth and fifth settings differ only in the bus frequency.
The three programs selected are dcache-miss, a C program
written specifically to generate data cache misses by per-
forming memory accesses on a large array; gzip, the pop-
ular file compression application; and cjpeg, a JPEG im-
age compressor. The theoretical line shows the expected ra-
tio, assuming that the execution time was linearly related



to the CPU frequency. With memory-intensive programs
like gzip and dcache-miss, execution times differ substan-
tially from the theoretical line, since the execution timesof
these programs are more dependent on the bus frequency
than the CPU frequency. The third application, cjpeg, is less
memory-intensive, showing an expected ratio closer to the
theoretical line compared to the two other applications. In-
tuitively, each process by itself or each combination of dif-
ferent processes could require a differentk′ factor, how-
ever, the approach addressed in this paper uses onek′ fac-
tor for all processes currently on the run queue. If a sim-
ple linear model were used to determine thek′ factors, it
would underestimate the utilization at lower clock frequen-
cies, resulting in missed deadlines, and overestimate the uti-
lization at higher clock frequencies, resulting in wasted en-
ergy. Also, notice that the curves nearly converge at three
points: 99MHz (50MHz), 199MHz (99MHz), and 398MHz
(196MHz). In this example, there is roughly the same ratio
between CPU and bus frequencies, so cache miss rates have
little effect on the execution time. The deviations shown in
Figure 1 point out the importance of considering cache miss
rates in the DVFS approach to accurately predict future task
run-times. Note that these measurements have been per-
formed on an XScale processor, a modern mobile scalar
processor with a 7-stage pipeline and out-of-order comple-
tion. While modern processors can hide certain memory la-
tencies, the hundreds of cycles resulting from DRAM ac-
cesses can cause significant performance losses [23]. There-
fore, we use cache misses as indicator for the performance
penalties incurred by memory accesses.

The remainder of this paper will use theMemory Access
Rate (MAR) to quantify the rate of cache misses. As op-
posed to themiss rate, MAR is defined in Equation 4 as the
ratio of data cache misses to instructions executed.

MAR =
data cache misses

instructions executed
(4)

Figure 2 shows gzip’s MAR plotted over time. Applications
like gzip show a behavior where overall the miss rate is
rather constant, but can change dramatically as shown in
the figure (e.g., different ‘phases’ of application execution).
In this example, the MAR value can vary by a factor of over
a hundred. Due to these variations, a single set ofk′ val-
ues would not be sufficient for DVFS over the entire execu-
tion of gzip.

3. Cache Miss Rates as Feedback for DVFS

Approach. Previous approaches to feedback-based DVFS
and CPU scheduling have neglected that the utilization of
resources, such as disk, network, or memory, can signifi-
cantly affect the run-time of applications, making run-time
predictions, and thereby frequency/voltage computations,

inaccurate. These inaccuracies can result in missed dead-
lines for real-time applications, inefficient energy manage-
ment (e.g., the voltage and frequency are chosen too high),
or too frequent re-adjustments of voltage and frequency. To
improve predictions of execution time, we monitor cache
miss rates using a software feedback loop. This is partic-
ularly important for memory-bound applications real-time
applications (e.g., image processing), where frequent mem-
ory accesses introduce additional latencies. Our DVFS ap-
proach uses performance counters to count the number of
data cache misses and instructions executed, and keep a
weighted average of the MAR for each process (Figure 3),
i.e., the most recent reading of MAR plus the previous read-
ing of MAR multiplied by 0.5. From this value, the CPU
scheduler can pick an appropriate matrix of scaling factors,
which will more accurately estimate the process’s execu-
tion time under the available frequencies.

Task
DVFS

Clock
Speed

CPU
Utilization

Execution

Run−Times&
Cache Misses

Monitoring

Figure 3. Feedback-based DVFS.

Our approach is implemented on an Intel Sitsang eval-
uation board with an XScale PXA255 processor. The XS-
cale PXA255 supports various CPU frequencies, ranging
from 99 MHz to 398 MHz and bus frequencies ranging from
50 MHz to 196 MHz. However, not all frequency combina-
tions may be used for DVFS, since some change the LCD
or SDRAM frequencies. Of the possible combinations, the
5 frequency levels supported in the Linux kernel are listed
in Table 1.

CPU Frequency Bus Frequency Min. CPU Voltage

99 MHz 50 MHz 0.8V
199 MHz 99 MHz 1.0V
299 MHz 99 MHz 1.1V
398 MHz 99 MHz 1.3V
398 MHz 196 MHz 1.3V

Table 1. Supported CPU / Bus Frequencies.



Cache Size Block Size Associativity Policy

Instruction 32 KB 32 B 32-Way Round-Robin
Mini-Data (L1) 2 KB 32 B 2-Way Round-Robin

Data (L2) 32 KB 32 B 32-Way Round-Robin

Table 2. XScale PXA255 Caches.

The Sitsang evaluation board contains 32 MB of flash
memory and 64 MB of SDRAM. The XScale PXA255 pro-
cessor has three caches, summarized in Table 2. For the
purposes of this project, we will only be monitoring cache
misses on the 32 KB data cache, future work will also in-
clude the instruction cache.

The system runs a modified Linux 2.4.19 kernel, with
Sitsang patches provided by Intel and a patch implement-
ing our replacement real-time CPU scheduler.

Performance Counters. Many processors support some
form of performance counters for optimization. These hard-
ware counters support the monitoring of numerous types of
events, such as memory accesses and pipeline stalls. The In-
tel XScale PXA255 processor has three 32-bit performance
counters: one which counts clock cycles and two general-
purpose counters, which may be used to monitor any of 16
possible events, selectable in software via a configuration
register1.

For these experiments, it is important to choose per-
formance counters which are not affected by frequency
changes. Since the execution time varies with fre-
quency, cache misses over clock cycles would vary for
a given program depending on the frequency. There-
fore, for the computation of MAR, instructions executed
was chosen instead of clock cycles. Unfortunately, the
PXA255 does not provide a performance counter for com-
bined cache misses, only separate ones for the instruction
and data caches. Due to the limitations of the proces-
sor, data cache misses was chosen. Hence, the definition
of the MAR as the ratio of data cache misses to instruc-
tions executed (Equation 4).

Monitoring of Cache Miss Rates. To implement an
energy-aware scheduler using cache feedback, we first
must approximate the execution time of a process with a
given MAR. If we take a program’s execution time and
break it into two components – the time spent executing in-
structions and the time spent stalled on memory accesses –
we get the following formula:

texecution = CCPU (fCPU ) + (MAR ∗ Cbus(fbus)) (5)

1 http://www.intel.com/design/pca/prodbref/252780docs.htm

whereCCPU (fCPU ) is a constant dependent on CPU clock
frequency, andCbus(fbus) is a constant dependent on bus
frequency. To find the values for these two constants, a test
program was designed to generate a specified miss rate by
performing memory accesses on a large array. The test pro-
gram was run with multiple MARs at each supported fre-
quency, and using linear regression, the execution times
were used to determine the constantsCCPU andCbus. The
experimental determination of theCbus constants ensures
that processor techniques to hide memory latencies are con-
sidered, i.e.,Cbus only indicates the memory latencies that
could not be hidden by the processor.
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Figure 4. Actual execution time of our test
program.

Figure 4 displays the actual – measured – execution
times of our test program. In contrast, Figure 5 shows the
predicted execution times, based on Equation 5. The results
of these two figures are almost identical, underlining the im-
portance of adding caching information to the prediction of
task run-times.

The scaling factors for each frequency can be calculated
using the ratio of the execution times from the equation
above. Calculating these scaling factors at runtime would
add extra overhead to each scheduler invocation, so twelve
matrices of scaling factors were pre-calculated and com-
piled into the DVFS module. The twelve matrices were se-
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lected such that matrixMn corresponds to the scaling fac-
tors for processes with an MAR of2−n.

A field was added to Linux’s taskstruct to keep a
weighted average of the MAR for each process. The sched-
uler was modified to support DVFS using the following
algorithm:

1: prev->dcache_misses=(prev->dcache_misses/2)
+pmu->dcache_misses;

2: prev->instructions=(prev->instructions/2)
+pmu->instructions;

3: schedule();

4: inverse_mar=next->instructions/next->dcache_misses;
5: n=schmitt_function(inverse_mar);

6: M_n=freq_matrix[n];

7: new_freq=find_minimum_freq(M_n, cur_freq, utilization);

8: if (cur_freq != new_freq)
9: set_cpu_freq(new_freq);

10: reset_pmu_counters();

Lines 1-2 update the weighted average of the previous
process’s MAR. Line 3 invokes the CPU scheduler, select-
ing the next process. Once the next task is selected, we can
computen, the−log2 of the next process’s MAR, using the
Schmitt-trigger-style function in Figure 6 (lines 4-5). This
function avoids frequent changes in voltage and frequency,
thereby avoiding the large overheads associated with these
changes; for the test programs used in this paper we mea-
sured at most 3 voltage/frequency changes for the entire ap-
plication run-time. The closest of the 12 pre-computed fre-
quency matrices,Mn is selected from the lookup table (line
6). Line 7 uses the matrix of scaling factors (see Section 2)
to determine the minimum frequency needed to meet the
process’s deadline (i.e., a simple matrix lookup), and if this
frequency is different than the current frequency, the proces-
sor frequency is changed (lines 8-9). Finally, the XScale’s
PMU counters are reset before the next process begins exe-
cution (line 10).

4. Experimental Evaluation

This section verifies the modified DVFS approach based
on cache information with multiple applications. The
first part of this section addresses the overheads associ-
ated with our approach and the second part tests the effec-
tiveness of the cache feedback loop. The scaling factors are
computed to bring the system’s utilization as close as pos-
sible to 100%.

Microbenchmarks and Overheads. The following list
summarizes the noteworthy overheads associated with
DVFS in general, and with our approach in particu-
lar.

• According to the PXA255 User’s Guide2, the worst-
case time for a frequency change is 500µs, which un-
derlines the importance of limiting the number of volt-
age/frequency changes (e.g., using the Schmitt-trigger-
style function described above).

• The PXA255 performance counters are mapped into
memory. Reading the three performance counters re-
quires only three memory reads per context switch. Re-
setting the counters at each context switch requires an
additional read and write to the control register.

2 http://www.intel.com/design/pca/prodbref/252780docs.htm
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• The 12 pre-calculated frequency matrices occupy
1,200 bytes of memory. The additional overhead of se-
lecting the appropriate matrix adds less than 75 lines
of code using only 32-bit integer arithmetic and
only one 32-bit integer division to calculate the ra-
tio of cache misses to instructions.

• The execution time of the CPU scheduler was mea-
sured to range from 10 to 150µs. The addition of the
cache feedback loop added an additional 1 to 5µs over-
head. These numbers vary greatly, since scheduler
execution time is dependent on both the clock fre-
quency and the number of processes in the run queue.

Evaluation. To test the effectiveness of the cache feed-
back loop, six different programs are run under various ser-
vice constraints. Of the six test programs, two of the pro-
grams chosen are special test programs, designed to gener-
ate data cache hits and misses, respectively. The other four
programs, madplay, djpeg, cjpeg, and gzip, are chosen to
be representative of common memory-bound applications
or real-time multimedia applications.

Test Program MAR (%)

dcache-hit 0.05
cjpeg 1.26

madplay 3.03
djpeg 3.39
gzip 4.06

dcache-miss 11.13

Table 3. MARs of test programs.

��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

99 MHz
(50 MHz)

199 MHz
(99 MHz)

298 MHz
(99 MHz)

398 MHz
(99 MHz)

398 MHz
(196 MHz)

10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%

C
P

U
 F

re
qu

en
cy

 (
B

us
 F

re
qu

en
cy

)

Utilization

Theoretical
Cache Feedback

Figure 8. CPU/bus frequencies of dcache-
miss.
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Figure 9. Execution times of gzip.

For the dcache-hit and cjpeg, test cases with low MARs
(expressed in percentage of instructions executed in Ta-
ble 3), there is little difference between the results of the
theoretical frequency scaling and the feedback loop. This is
to be expected, since the single scaling factors used by the
theoretical algorithm were calculated using a process with
a low MAR.

On processes with a higher MAR, such as dcache-miss,
gzip, djpeg, and madplay, the performance exhibits the S-
shaped curve in Figure 1 as frequency is scaled. In these
cases, the feedback loop helps conserve energy at lower uti-
lizations and also helps avoid missed deadlines at higher
utilizations. Figures 7 through 12 show the measured re-
sults for dcache-miss, gzip, madplay, and djpeg.

Figures 7, 9, 11, and 13 show the execution times of our
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Figure 10. CPU/bus frequencies of gzip.
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Figure 11. Execution times of madplay.

test cases. In most cases, the execution times of both the the-
oretical algorithm and the feedback loop are less than the
deadline, indicating that the process met its deadline. Re-
member that in the scheduler used in this paper, the end of
the current period for each task is considered the task’s cur-
rent deadline. For example, in the case of dcache-miss (Fig-
ure 7), the feedback loop is able to save more energy in 7
cases, compared to higher energy consumptions in 3 cases,
and equal energy consumptions in another 7 cases.

Figures 8, 10, 12, and 10 show the average frequencies of
the same applications. In many cases, the feedback loop re-
duces energy consumption by selecting a lower frequency
than the theoretical algorithm. In these cases, a bus speed
of 99 MHz is necessary to support the memory references.
Since the MAR of the test processes is high, the lowest CPU
speed supporting a 99 MHz bus will meet the deadlines in
most of the test cases. By detecting the high MAR, the feed-
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Figure 12. CPU/bus frequencies of madplay.
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Figure 13. Execution times of djpeg.

back loop selects the lowest CPU frequency supporting the
necessary bus speed, resulting in a lower energy consump-
tion over the theoretical algorithm.

However, in a few test cases, the feedback loop is over-
aggressive when minimizing clock frequencies, causing it
to perform worse than the theoretical algorithm. In other
test cases, both the feedback loop and the theoretical algo-
rithm miss their deadlines. In these cases, outside factors
such as I/O response time and context switching likely in-
crease the execution time of the process more than expected,
resulting in a missed deadline. In further research, we intend
to implement a multi-resource feedback algorithm, measur-
ing and taking these factors into consideration when choos-
ing optimal frequencies.

Table 4 summarizes the results of the test cases. In the
majority of cases, there is no difference between the execu-
tion under the theoretical algorithm and the feedback loop.
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Figure 14. CPU/bus frequencies of djpeg.

This is due to the XScale PXA255’s limited number of fre-
quencies. Since there are only five frequency combinations
available, the theoretical algorithm usually picks the opti-
mum frequency. However, particularly at high utilizations
and/or high memory access rates, the feedback loop is more
accurate in the determination of the optimum frequency.

Out of the 102 test cases, the feedback loop results in
fewer missed deadlines in 6% of the cases tested. In an-
other 27% of the cases, the feedback loop results in a lower
operating frequency. Overall, these savings lead to an aver-
age frequency 8.1% lower than the theoretical DVFS algo-
rithm.

Finally, to show that our approach achieves good results
when multiple applications compete for the CPU, we run
one CPU-bound task (gzip) and one memory-bound task
(dcache-miss) simultaneously. Here, the feedback-based ap-
proach meets all task deadlines for all CPU utilizations
(10%-90%), while the theoretical approach misses the dead-
line in 22% of the test cases. In addition, the feedback-based
approach manages to achieve a lower energy consumption
in 44% of the test cases.

5. Summary and Conclusion

Dynamic voltage and frequency scaling allows for a re-
duction in energy consumption and in heat dissipation for
mobile devices. However, most DVFS algorithms are not
well-suited to real-time applications, since they will either
miss deadlines or waste energy if the execution time of the
process is miscalculated. Utilizing the processor’s perfor-
mance counters to monitor memory accesses, we propose
to better predict process execution time using a feedback
loop. Here, the DVFS approach considers the recent num-
ber of cache misses, deriving the overheads for accessing

memory, and thereby better predicting an application’s run-
time, resulting in more precise voltage and frequency com-
putations.

When tested with six applications under various utiliza-
tions, the cache feedback method results in an energy sav-
ings in 27% of the cases tested. At high utilizations and high
memory access rates, the feedback loop raised the CPU fre-
quency, avoiding missed deadlines in 6% of the cases tested.

In future research, we plan to monitor additional re-
sources to use in our feedback loop, including I/O requests
and context switching overheads. We intend to more ac-
curately predict process execution times by incorporating
more variables in our calculations. Further, our ongoing
work addresses the linking of DVFS with the energy man-
agement techniques found on other resources, e.g., the sleep
modes of I/O devices.
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